Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach

Diggle and Kenward (1994, Applied Statistics 43, 49-93) proposed a selection model for continuous longitudinal data subject to nonrandom dropout. It has provoked a large debate about the role for such models. The original enthusiasm was followed by skepticism about the strong but untestable assumptions on which this type of model invariably rests. Since then, the view has emerged that these models should ideally be made part of a sensitivity analysis. This paper presents a formal and flexible approach to such a sensitivity assessment based on local influence (Cook, 1986, Journal of the Royal Statistical Society, Series B 48, 133-169). The influence of perturbing a missing-at-random dropout model in the direction of nonrandom dropout is explored. The method is applied to data from a randomized experiment on the inhibition of testosterone production in rats.

[1]  Michael G. Kenward,et al.  Nonrandom Missingness in Categorical Data: Strengt hs and Limitations , 1999 .

[2]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[3]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[4]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[5]  G Molenberghs,et al.  Parametric models for incomplete continuous and categorical longitudinal data , 1999, Statistical methods in medical research.

[6]  Donald B. Rubin,et al.  Selection modelling versus mixture modelling with nonignorable nonresponse , 1986 .

[7]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[8]  Geert Molenberghs,et al.  Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case , 2001 .

[9]  M. Kenward Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. , 1998, Statistics in medicine.

[10]  Geert Molenberghs,et al.  Likelihood Based Frequentist Inference When Data Are Missing at Random , 1998 .

[11]  Donald B. Rubin,et al.  Selection Modeling Versus Mixture Modeling with Nonignorable Nonresponse , 1986 .

[12]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[13]  M. Kenward,et al.  Informative dropout in longitudinal data analysis (with discussion) , 1994 .

[14]  J. Robins,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .

[15]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[16]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[17]  L. de Ridder,et al.  Comparative effects of neonatal and prepubertal castration on craniofacial growth in rats. , 1998, Archives of oral biology.

[18]  Geert Molenberghs,et al.  Discussion of Diggle, P. and Kenward, M. G.: 'Informative drop-out in longitudinal data analysis' , 1994 .

[19]  S. Sheather,et al.  Small Sample Properties of Robust Analyses of Linear Models Based on R-Estimates: A Survey , 1991 .

[20]  Stuart R. Lipsitz,et al.  Analysis of longitudinal data with non‐ignorable non‐monotone missing values , 2002 .

[21]  R. Cook Assessment of Local Influence , 1986 .

[22]  S G Baker,et al.  Marginal regression for repeated binary data with outcome subject to non-ignorable non-response. , 1995, Biometrics.

[23]  Peter J. Diggle,et al.  Informative dropout in longitudinal data analysis. , 1994 .