A cosmographic analysis of the transition to acceleration using SN-Ia and BAO

We explore the distance-redshift relation using a cosmographic methodology, and show how the cosmographic parameters can be used to determine the redshift of transition from deceleration to acceleration. Such a transition at a low redshift occupies only a small region of the available parameter space, and the prior assumption of an early period of deceleration can significantly change the posterior constraints. We use available type Ia Supernovae (SN-Ia) and Baryon Acoustic Oscillation (BAO) data sets to determine the cosmographic deceleration $q_0$, jerk $j_0$, snap $s_0$ and lerk $l_0$ parameters. The parameters are consistent with the $\Lambda$CDM model for a flat universe within 2-sigma. We derive constraints on the redshift of transition from deceleration to acceleration for the different expansions, and find $z_{\rm acc} > 0.14$ at 95% confidence in the most conservative case.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[3]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[4]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[5]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[6]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[7]  Supernovae and the nature of the dark energy , 2001, astro-ph/0104009.

[8]  Matt Visser Jerk, snap, and the cosmological equation of state , 2003 .

[9]  Statefinder—A new geometrical diagnostic of dark energy , 2002, astro-ph/0201498.

[10]  Cosmography: Cosmology without the Einstein equations , 2004, gr-qc/0411131.

[11]  Pia Mukherjee,et al.  Present and future evidence for evolving dark energy , 2006 .

[12]  M. Visser,et al.  Cosmography: Extracting the Hubble series from the supernova data , 2007, gr-qc/0703122.

[13]  M. Visser,et al.  Cosmographic Hubble fits to the supernova data , 2008, 0809.0537.

[14]  J. V. Cunha,et al.  Transition redshift: new kinematic constraints from supernovae , 2008, 0805.1261.

[15]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II (SDSS-II) SUPERNOVA RESULTS: CONSTRAINTS ON NONSTANDARD COSMOLOGICAL MODELS , 2009, 0908.4276.

[16]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[17]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[18]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[19]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[20]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[21]  S. Capozziello,et al.  Comprehensive cosmographic analysis by Markov Chain Method , 2011, 1104.3096.

[22]  J. C. Carvalho,et al.  Current constraints on the epoch of cosmic acceleration , 2010, 1009.2733.

[23]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[24]  High-z cosmography at a glance , 2013, 1302.7155.

[25]  BAO cosmography , 2013, 1311.6817.

[26]  Bharat Ratra,et al.  HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE COSMOLOGICAL DECELERATION–ACCELERATION TRANSITION REDSHIFT , 2013, 1301.5243.

[27]  Bharat Ratra,et al.  Binned Hubble parameter measurements and the cosmological deceleration–acceleration transition , 2013, 1305.1957.

[28]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[29]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[30]  S. Capozziello,et al.  Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in f(R) gravity , 2014, 1403.1421.

[31]  Adam D. Myers,et al.  Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.

[32]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[33]  S. Capozziello,et al.  Transition redshift in $f(T)$ cosmology and observational constraints , 2015, 1503.02832.

[34]  W. Sutherland,et al.  On the luminosity distance and the epoch of acceleration , 2015, 1503.01122.

[35]  Daniel Thomas,et al.  A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration , 2016, 1601.01701.