Design of piezocomposite materials and piezoelectric transducers using topology optimization— Part III

SummaryFollowing the topic introduced in [1, 2] this paper discusses the design of piezoelectric transducers used in applications such as acoustic wave generation and resonators. These applications require goals in the transducer design such as high electromechanical energy conversion for a certain transducer vibration mode and narrowband or broadband response. The development of these devices has been based on the use of simple analytical models, test of prototypes, and analysis by the finite element method. However, in all cases the design is limited to a parametric optimization where only some dimensions of a chosen transducer configuration are optimized. By changing the topology of these devices or their components, we may obtain devices with better performance since the design space of solutions is enlarged. Based on this idea, we have proposed the use of topology optimization for designing these devices. This method consists of finding the distribution of the material and void phases in the design domain that optimizes a defined objective function. The optimized solution is obtained using Sequential Linear Programming (SLP). Considering acoustic wave generation and resonator applications, three kinds of objective functions were defined: maximize the energy conversion for a specific mode or a set of modes; design a transducer with specified frequencies; and design a transducer with narrowband or broadband response. Although only two-dimensional plane strain transducer topologies have been considered in order to illustrate the implementation of the method, it can be extended to three-dimensional topologies. Transducer designs were obtained that conform to the desired design requirements and have better performance characteristics than other common designs.

[1]  M. Naillon,et al.  Analyse de structures piézoélectriques par une méthode d'éléments finis , 1983 .

[2]  W. A. Smith,et al.  Modeling 1-3 composite piezoelectrics: hydrostatic response , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  F. Montero de Espinosa,et al.  Modeling (2-2) piezocomposites partially sliced in the polymer phase , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part II: Evaluation of Ultrasonic Medical Applications , 1985, IEEE Transactions on Sonics and Ultrasonics.

[5]  W. A. Smith,et al.  Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio , 1991, IEEE 1991 Ultrasonics Symposium,.

[6]  N. Kikuchi,et al.  Integrated topology and shape optimization in structural design , 1991 .

[7]  Ken-ya Hashimoto,et al.  Elastic, Piezoelectric and Dielectric Properties of Composite Materials , 1986, IEEE 1986 Ultrasonics Symposium.

[8]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .

[9]  Ken-ya Hashimoto,et al.  Finite Element Method Analysis of Dispersion Characteristics for 1-3 Type Piezoelectric Composites , 1987, IEEE 1987 Ultrasonics Symposium.

[10]  W. A. Smith,et al.  Limits to the enhancement of piezoelectric transducers achievable by materials engineering , 1992, IEEE 1992 Ultrasonics Symposium Proceedings.

[11]  Y. Benveniste,et al.  Uniform fields and universal relations in piezoelectric composites , 1992 .

[12]  W. A. Smith,et al.  The application of 1-3 piezocomposites in acoustic transducers , 1990, [Proceedings] 1990 IEEE 7th International Symposium on Applications of Ferroelectrics.

[13]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[14]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[15]  Gérard A. Maugin,et al.  On the linear piezoelectricity of composite materials , 1991 .

[16]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[17]  R. J. Hanson,et al.  Sparse linear programming subprogram , 1981 .

[18]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites , 1985, IEEE Transactions on Sonics and Ultrasonics.

[19]  L. E. Cross,et al.  Piezoelectric performance of piezoceramic-polymer composites with 2-2 connectivity-a combined theoretical and experimental study , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  J. S. Wood,et al.  Optimization of the shape of a quartz resonator , 1993 .

[21]  Y.-K. Yong A new storage scheme for the Lanczos solution of large scale finite element models of piezoelectric resonators , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[22]  A. Fukumoto,et al.  Dependence of the electromechanical coupling coefficient on the width‐to‐thickness ratio of plank‐shaped piezoelectric transducers used for electronically scanned ultrasound diagnostic systems , 1979 .

[23]  R. Lerch,et al.  Simulation of piezoelectric devices by two- and three-dimensional finite elements , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[25]  J. J. Telega,et al.  Homogenization and thermopiezoelectricity , 1992 .

[26]  N. Kikuchi,et al.  Optimal design of piezoelectric microstructures , 1997 .

[27]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[28]  Ren-Jye Yang,et al.  Optimal topology design using linear programming , 1994 .

[29]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989 .

[30]  G. Hayward,et al.  Design of 1-3 piezocomposite hydrophones using finite element analysis , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  D. Hitchings,et al.  The finite element analysis of the vibration characteristics of piezoelectric discs , 1992 .

[32]  J. A. Otero,et al.  Homogenization of heterogeneous piezoelectric medium , 1997 .

[33]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[34]  N. Kikuchi,et al.  Solutions to shape and topology eigenvalue optimization problems using a homogenization method , 1992 .

[35]  Robert Lipton,et al.  Optimal bounds on effective elastic tensors for orthotropic composites , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  Salvatore Torquato,et al.  Optimal design of 1-3 composite piezoelectrics , 1997 .

[37]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[38]  K. Bathe Finite Element Procedures , 1995 .

[39]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[40]  K. Schulgasser Relationships between the effective properties of transversely isotropic piezoelectric composites , 1992 .

[41]  P. Challande Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[43]  A. Safari Development of piezoelectric composites for transducers , 1994 .

[44]  Leslie E. Cross,et al.  Flexible composite transducers , 1978 .

[45]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[46]  Daniel Guyomar,et al.  Power ceramic materials for piezocomposite hydrophone , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[47]  Ahmad Safari,et al.  Composite piezoelectric sensors , 1984 .

[48]  Paul F. Jacobs,et al.  Stereolithography and Other Rp&m Technologies: From Rapid Prototyping to Rapid Tooling , 1995 .

[49]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[50]  G. Hayward,et al.  Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[51]  L. E. Cross,et al.  A new transverse piezoelectric mode 2-2 piezocomposite for underwater transducer applications , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[52]  Robert E. Newnham,et al.  An experimental and theoretical study of 1–3 AND 1-3-0 piezoelectric PZT-Polymer composites for hydrophone applications , 1986 .

[53]  Wang Biao,et al.  Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material , 1992 .

[54]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[55]  W. A. Smith,et al.  The role of piezocomposites in ultrasonic transducers , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[56]  Robert Y. Ting,et al.  Piezoelectric properties of 1-3 composites of a calcium-modified lead titanate in epoxy resins , 1990, IEEE Symposium on Ultrasonics.

[57]  G. Milton,et al.  Which Elasticity Tensors are Realizable , 1995 .

[58]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[59]  S. Saigal,et al.  Shape sensitivity analysis of piezoelectric structures by the adjoint variable method , 1991 .

[60]  Qiang Xue,et al.  Dynamic characteristics of 2-2 piezoelectric composite transducers , 1997 .

[61]  B. A. Auld,et al.  Dynamic Behavior of Periodic Piezoelectric Composites , 1983 .

[62]  H. Kunkel,et al.  Finite-element analysis of vibrational modes in piezoelectric ceramic disks , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[63]  Y.-K. Yong,et al.  Algorithms for eigenvalue problems in piezoelectric finite element analyses , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[64]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[65]  S. O. Kramarov,et al.  Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions , 1989 .

[66]  H. Banno,et al.  Theoretical equations for dielectric, elastic and piezoelectric constants of diphasic composite changing its connectivity from 3-0 to 0-3 via 3-3 , 1994, Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics.

[67]  Jasbir S. Arora,et al.  Topology design of material layout in structured composites of high stiffness and strength , 1997 .

[68]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[69]  N. Kikuchi,et al.  Topological design for vibrating structures , 1995 .

[70]  S. Torquato,et al.  Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[71]  T.E. Gomez,et al.  Piezocomposites of complex microstructure: theory and experimental assessment of the coupling between phases , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[72]  J. Hossack,et al.  Finite-element analysis of 1-3 composite transducers , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[73]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[74]  L. Bjørnø,et al.  Broadband tonpilz underwater acoustic transducers based on multimode optimization , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[75]  Jaroslav Haslinger,et al.  Optimum composite material design , 1995 .