暂无分享,去创建一个
Alexandre Allauzen | Lionel Mathelin | Onofrio Semeraro | Alessandro Bucci | Sergio Chibbaro | A. Allauzen | L. Mathelin | O. Semeraro | S. Chibbaro | Alessandro Bucci
[1] Jürgen Schmidhuber,et al. Applying LSTM to Time Series Predictable through Time-Window Approaches , 2000, ICANN.
[2] J. Ginoux,et al. Flow curvature manifolds for shaping chaotic attractors: I. Rössler-like systems , 2009, 1408.3917.
[3] Jürgen Schmidhuber,et al. Long Short-Term Memory , 1997, Neural Computation.
[4] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[5] James P. Crutchfield,et al. Equations of Motion from a Data Series , 1987, Complex Syst..
[6] Martin Casdagli,et al. An analytic approach to practical state space reconstruction , 1992 .
[7] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[8] M. Jorge Cardoso,et al. On the Initialization of Long Short-Term Memory Networks , 2019, ICONIP.
[9] R. Gilmore,et al. Connecting curves for dynamical systems , 2010, 1003.1703.
[10] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[11] Y. Wong,et al. Differentiable Manifolds , 2009 .
[12] J. Gillis,et al. Probability and Related Topics in Physical Sciences , 1960 .
[13] F. Takens. Detecting strange attractors in turbulence , 1981 .
[14] A. Vulpiani,et al. Predictability: a way to characterize complexity , 2001, nlin/0101029.
[15] Paris Perdikaris,et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..
[16] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[17] J. A. Stewart,et al. Nonlinear Time Series Analysis , 2015 .
[18] Petros Koumoutsakos,et al. Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.
[19] Jaideep Pathak,et al. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. , 2017, Chaos.
[20] Birgit Kirsch,et al. Informed Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems , 2019 .
[21] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[22] H. Poincaré. Les méthodes nouvelles de la mécanique céleste. Tome 3 , 2015 .
[23] 俊一 甘利. 5分で分かる!? 有名論文ナナメ読み:Jacot, Arthor, Gabriel, Franck and Hongler, Clement : Neural Tangent Kernel : Convergence and Generalization in Neural Networks , 2020 .
[24] Christopher J Rozell,et al. Stabilizing embedology: Geometry-preserving delay-coordinate maps. , 2016, Physical review. E.
[25] Paris Perdikaris,et al. Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data , 2019, J. Comput. Phys..
[26] Prabhat,et al. Physics-informed machine learning: case studies for weather and climate modelling , 2021, Philosophical Transactions of the Royal Society A.
[27] Jaideep Pathak,et al. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics , 2019, Neural Networks.
[28] Jaideep Pathak,et al. Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. , 2018, Physical review letters.
[29] Nikolay V. Kuznetsov,et al. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension , 2020, Nonlinear Dynamics.
[30] A. Vulpiani,et al. Anomalous scaling laws in multifractal objects , 1987 .
[31] Lewis Campbell,et al. The Life of James Clerk Maxwell , .