The apicoplast: a key target to cure malaria.

Malaria is one of the major global health problems. About 500 million humans are infected each year, and 1 million, mostly African children, die from malaria annually. No vaccine is yet in sight, and those drugs that have previously served us well are now losing ground against the disease as parasites become resistant to our best compounds. The need for development of new antimalarials is now more urgent than ever. An exciting avenue for development of new drugs emerged recently when it was discovered that the malaria parasites have a previously unrecognized evolutionary history aligned to plants. These parasites contain a subcellular compartment--the apicoplast--which is homologous to the chloroplast of plants and algae, in which photosynthesis occurs. The malaria chloroplast (apicoplast) has lost photosynthesis but it retains many chloroplast pathways, which are otherwise unique to plants. These pathways obviously do not exist in the human host and there has been considerable excitement about using the apicoplast as a parasite-specific Achilles' Heel. We propose to review the current state of development of novel compounds directed against this emerging target of malaria parasites with emphasis on the chemistry.

[1]  G. McFadden,et al.  Plasmodium falciparum apicoplast drugs: targets or off-targets? , 2012, Chemical reviews.

[2]  A. Kastaniotis,et al.  Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii* , 2011, The Journal of Biological Chemistry.

[3]  N. Surolia,et al.  Benzothiophene carboxamide derivatives as inhibitors of Plasmodium falciparum enoyl‐ACP reductase , 2011, IUBMB life.

[4]  M. Llinás,et al.  The primase domain of PfPrex is a proteolytically matured, essential enzyme of the apicoplast. , 2011, Molecular and biochemical parasitology.

[5]  E. Maréchal,et al.  Membrane lipidomics for the discovery of new antiparasitic drug targets. , 2011, Trends in parasitology.

[6]  E. R. James,et al.  Live Attenuated Malaria Vaccine Designed to Protect Through Hepatic CD8+ T Cell Immunity , 2011, Science.

[7]  M. Mota,et al.  Immunization with genetically attenuated P52-deficient Plasmodium berghei sporozoites induces a long-lasting effector memory CD8+ T cell response in the liver , 2011, Journal of immune based therapies and vaccines.

[8]  M. Mather,et al.  ATP Synthase Complex of Plasmodium falciparum , 2011, The Journal of Biological Chemistry.

[9]  D. Fidock,et al.  Identifying apicoplast‐targeting antimalarials using high‐throughput compatible approaches , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[10]  S. Ralph,et al.  Protein translation in Plasmodium parasites. , 2011, Trends in parasitology.

[11]  Joseph L. DeRisi,et al.  Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum , 2011, PLoS biology.

[12]  S. Kappe,et al.  Disruption of the Plasmodium falciparum liver‐stage antigen‐1 locus causes a differentiation defect in late liver‐stage parasites , 2011, Cellular microbiology.

[13]  G. McFadden,et al.  Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii , 2011, The Journal of experimental medicine.

[14]  G. McFadden,et al.  Identification of Plant-like Galactolipids in Chromera velia, a Photosynthetic Relative of Malaria Parasites , 2011, The Journal of Biological Chemistry.

[15]  A. Vaughan,et al.  Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. , 2011, Cell host & microbe.

[16]  D. Roos,et al.  Fosmidomycin Uptake into Plasmodium and Babesia-Infected Erythrocytes Is Facilitated by Parasite-Induced New Permeability Pathways , 2011, PloS one.

[17]  K. M. Watts,et al.  A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. , 2011, Biochemistry.

[18]  C. Biot,et al.  Ester prodrugs of ciprofloxacin as DNA-gyrase inhibitors: synthesis, antiparasitic evaluation and docking studies , 2011 .

[19]  S. Ball,et al.  The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. , 2011, Journal of experimental botany.

[20]  Xinxia Peng,et al.  SAP1 is a critical post‐transcriptional regulator of infectivity in malaria parasite sporozoite stages , 2011, Molecular microbiology.

[21]  F. L. D’Alexandri,et al.  Intraerythrocytic stages of Plasmodium falciparum biosynthesize menaquinone , 2010, FEBS letters.

[22]  T. Richards,et al.  Gene transfer: anything goes in plant mitochondria , 2010, BMC Biology.

[23]  F. Diederich,et al.  Thiazolopyrimidine Inhibitors of 2‐Methylerythritol 2,4‐Cyclodiphosphate Synthase (IspF) from Mycobacterium tuberculosis and Plasmodium falciparum , 2010, ChemMedChem.

[24]  P. Shah,et al.  3D-QSAR studies on triclosan derivatives as Plasmodium falciparum enoyl acyl carrier reductase inhibitors , 2010, SAR and QSAR in environmental research.

[25]  J. Archibald,et al.  Plastid evolution: gene transfer and the maintenance of 'stolen' organelles , 2010, BMC Biology.

[26]  N. Surolia,et al.  X‐ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibition , 2010, IUBMB life.

[27]  S. Briolant,et al.  Plasmodium falciparum proteome changes in response to doxycycline treatment , 2010, Malaria Journal.

[28]  Anang A. Shelat,et al.  Chemical genetics of Plasmodium falciparum , 2010, Nature.

[29]  D. Soldati-Favre,et al.  Apicoplast: keep it or leave it. , 2010, Microbes and infection.

[30]  G. McFadden,et al.  The evolution, metabolism and functions of the apicoplast , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  G. Kumar,et al.  SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl‐acyl carrier protein reductase , 2010, IUBMB life.

[32]  G. McFadden,et al.  The carbon and energy sources of the non‐photosynthetic plastid in the malaria parasite , 2010, FEBS letters.

[33]  A. Vaughan,et al.  Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection , 2010, Molecular microbiology.

[34]  Karsten Fischer,et al.  The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. , 2010, Cell host & microbe.

[35]  A. Vaughan,et al.  Genetically engineered, attenuated whole-cell vaccine approaches for malaria , 2010, Human vaccines.

[36]  Sumana Chakravarty,et al.  Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria , 2010, Human vaccines.

[37]  Choukri Ben Mamoun,et al.  Targeting the lipid metabolic pathways for the treatment of malaria , 2009, Drug development research.

[38]  A. Vaughan,et al.  Redefining the role of de novo fatty acid synthesis in Plasmodium parasites. , 2009, Trends in parasitology.

[39]  I. Gilbert,et al.  Thiolactomycin analogues as potential anti-Toxoplasma gondii agents. , 2009, Parasitology international.

[40]  C. Biot,et al.  Enhancement of the antimalarial activity of ciprofloxacin using a double prodrug/bioorganometallic approach. , 2009, Journal of medicinal chemistry.

[41]  A. Aly,et al.  Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design , 2009, Proceedings of the National Academy of Sciences.

[42]  Avadhesha Surolia,et al.  β‐Ketoacyl‐ACP synthase I/II from Plasmodium falciparum (PfFabB/F)—Is it B or F? , 2009, IUBMB life.

[43]  J. Carlton,et al.  Carotenoid Biosynthesis in Intraerythrocytic Stages of Plasmodium falciparum* , 2009, Journal of Biological Chemistry.

[44]  M. Shaikh,et al.  Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitors , 2009, Molecular Diversity.

[45]  S. Müller,et al.  Plasmodium falciparum: organelle-specific acquisition of lipoic acid. , 2009, The international journal of biochemistry & cell biology.

[46]  Takuya Maeda,et al.  Pyruvate kinase type-II isozyme in Plasmodium falciparum localizes to the apicoplast. , 2009, Parasitology international.

[47]  S. Prigge,et al.  Targeting the fatty acid biosynthesis enzyme, beta-ketoacyl-acyl carrier protein synthase III (PfKASIII), in the identification of novel antimalarial agents. , 2009, Journal of medicinal chemistry.

[48]  Joel S. Freundlich,et al.  Triclosan Derivatives: Towards Potent Inhibitors of Drug‐Sensitive and Drug‐Resistant Mycobacterium tuberculosis , 2009, ChemMedChem.

[49]  T. Cavalier-smith,et al.  Predation and eukaryote cell origins: a coevolutionary perspective. , 2009, The international journal of biochemistry & cell biology.

[50]  J. Archibald The Puzzle of Plastid Evolution , 2009, Current Biology.

[51]  A. Vaughan,et al.  Type II fatty acid synthesis is essential only for malaria parasite late liver stage development , 2008, Cellular microbiology.

[52]  S. Ralph,et al.  Theileria Apicoplast as a Target for Chemotherapy , 2008, Antimicrobial Agents and Chemotherapy.

[53]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[54]  Jonathan Crabtree,et al.  Comparative genomics of the neglected human malaria parasite Plasmodium vivax , 2008, Nature.

[55]  P. Rosenthal,et al.  Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. , 2008, Trends in parasitology.

[56]  D. Roos,et al.  A Novel GDP-dependent Pyruvate Kinase Isozyme from Toxoplasma gondii Localizes to Both the Apicoplast and the Mitochondrion* , 2008, Journal of Biological Chemistry.

[57]  I. Coppens,et al.  Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection , 2008, Molecular microbiology.

[58]  J. Archibald,et al.  The eukaryotic tree of life: endosymbiosis takes its TOL. , 2008, Trends in ecology & evolution.

[59]  C. Rock,et al.  Membrane lipid homeostasis in bacteria , 2008, Nature Reviews Microbiology.

[60]  O. Hoegh‐Guldberg,et al.  A photosynthetic alveolate closely related to apicomplexan parasites , 2008, Nature.

[61]  L. Sibley,et al.  Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii , 2008, Nature.

[62]  Terry K. Smith,et al.  Apicoplast Lipoic Acid Protein Ligase B Is Not Essential for Plasmodium falciparum , 2007, PLoS pathogens.

[63]  I. Gilbert,et al.  Target assessment for antiparasitic drug discovery. , 2007, Trends in parasitology.

[64]  Shelby L. Bidwell,et al.  Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa , 2007, PLoS pathogens.

[65]  B. Striepen,et al.  Make It or Take It: Fatty Acid Metabolism of Apicomplexan Parasites , 2007, Eukaryotic Cell.

[66]  S. Kappe,et al.  Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. , 2007, The Journal of infectious diseases.

[67]  D. Rice,et al.  Type I and type II fatty acid biosynthesis in Eimeria tenella: enoyl reductase activity and structure , 2007, Parasitology.

[68]  P. Rosenthal,et al.  Multiple Antibiotics Exert Delayed Effects against the Plasmodium falciparum Apicoplast , 2007, Antimicrobial Agents and Chemotherapy.

[69]  M. Clastre,et al.  The methylerythritol phosphate pathway for isoprenoid biosynthesis in coccidia: presence and sensitivity to fosmidomycin. , 2007, Experimental parasitology.

[70]  Ruben Abagyan,et al.  Discovery of novel inhibitors targeting enoyl-acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening. , 2007, Biochemical and biophysical research communications.

[71]  Ashutosh Kumar,et al.  Nuclear gyrB encodes a functional subunit of the Plasmodium falciparum gyrase that is involved in apicoplast DNA replication. , 2007, Molecular and biochemical parasitology.

[72]  I. Coppens,et al.  Plasmodium yoelii Sporozoites with Simultaneous Deletion of P52 and P36 Are Completely Attenuated and Confer Sterile Immunity against Infection , 2007, Infection and Immunity.

[73]  C. Howe,et al.  The little genome of apicomplexan plastids: its raison d'etre and a possible explanation for the 'delayed death' phenomenon. , 2007, Protist.

[74]  P. T. Englund,et al.  A fatty-acid synthesis mechanism specialized for parasitism , 2007, Nature Reviews Microbiology.

[75]  G. McFadden,et al.  The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[76]  S. Prigge,et al.  Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum , 2007, Molecular microbiology.

[77]  G. Zhu,et al.  Functional characterization of the acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase. , 2007, International journal for parasitology.

[78]  D. Fidock,et al.  In Vitro Efficacy, Resistance Selection, and Structural Modeling Studies Implicate the Malarial Parasite Apicoplast as the Target of Azithromycin* , 2007, Journal of Biological Chemistry.

[79]  T. Ramya,et al.  Novel diphenyl ethers: design, docking studies, synthesis and inhibition of enoyl ACP reductase of Plasmodium falciparum and Escherichia coli. , 2006, Bioorganic & medicinal chemistry.

[80]  J. Archibald Endosymbiosis: Double-Take on Plastid Origins , 2006, Current Biology.

[81]  Joseph L. DeRisi,et al.  Tetracyclines Specifically Target the Apicoplast of the Malaria Parasite Plasmodium falciparum , 2006, Antimicrobial Agents and Chemotherapy.

[82]  B. Striepen,et al.  Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii , 2006, Proceedings of the National Academy of Sciences.

[83]  T. Cavalier-smith Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium , 2006, Proceedings of the Royal Society B: Biological Sciences.

[84]  J. Wiesner,et al.  Fosmidomycin plus Clindamycin for Treatment of Pediatric Patients Aged 1 to 14 Years with Plasmodium falciparum Malaria , 2006, Antimicrobial Agents and Chemotherapy.

[85]  S. Ralph,et al.  Membrane transporters in the relict plastid of malaria parasites. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[86]  G. Folkers,et al.  Recombinant Expression and Biochemical Characterization of the Unique Elongating β-Ketoacyl-Acyl Carrier Protein Synthase Involved in Fatty Acid Biosynthesis of Plasmodium falciparum Using Natural and Artificial Substrates* , 2006, Journal of Biological Chemistry.

[87]  E. Maréchal,et al.  Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. , 2006, The Biochemical journal.

[88]  M. Gelb,et al.  Thematic review series: Lipid Posttranslational Modifications. Fighting parasitic disease by blocking protein farnesylation Published, JLR Papers in Press, December 7, 2005. , 2006, Journal of Lipid Research.

[89]  Y. Chinzei,et al.  Two proteins with 6‐cys motifs are required for malarial parasites to commit to infection of the hepatocyte , 2005, Molecular microbiology.

[90]  Tsutomu Suzuki,et al.  Antibiotic susceptibility of mammalian mitochondrial translation , 2005, FEBS letters.

[91]  F. Gozzo,et al.  Identification, molecular cloning and functional characterization of an octaprenyl pyrophosphate synthase in intra-erythrocytic stages of Plasmodium falciparum. , 2005, The Biochemical journal.

[92]  A. Bilska,et al.  Lipoic acid - the drug of the future? , 2005, Pharmacological reports : PR.

[93]  J. Wiesner,et al.  Short-Course Regimens of Artesunate-Fosmidomycin in Treatment of Uncomplicated Plasmodium falciparum Malaria , 2005, Antimicrobial Agents and Chemotherapy.

[94]  P. Vierling,et al.  Quinolone-based drugs against Toxoplasma gondii and Plasmodium spp. , 2005, Current Drug Targets - Infectious Disorders.

[95]  I. Gilbert,et al.  Analogues of thiolactomycin as potential antimalarial agents. , 2005, Journal of medicinal chemistry.

[96]  M. Mota,et al.  Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Christopher J. Tonkin,et al.  Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum , 2005, Molecular microbiology.

[98]  Jonathan E. Allen,et al.  Genome Sequence of Theileria parva, a Bovine Pathogen That Transforms Lymphocytes , 2005, Science.

[99]  M. Barrett,et al.  The plastidic DNA replication enzyme complex of Plasmodium falciparum. , 2005, Molecular and biochemical parasitology.

[100]  Gurmukh Sahota,et al.  Bisphosphonate inhibitors of Toxoplasma gondi growth: in vitro, QSAR, and in vivo investigations. , 2005, Journal of medicinal chemistry.

[101]  Sushma Chaubey,et al.  The apicoplast of Plasmodium falciparum is translationally active , 2005, Molecular microbiology.

[102]  J. Dame,et al.  Expression and characterization of the ATP-binding domain of a malarial Plasmodium vivax gene homologous to the B-subunit of the bacterial topoisomerase DNA gyrase. , 2005, Molecular and biochemical parasitology.

[103]  S. Kappe,et al.  Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[104]  R. Wilson Parasite plastids: approaching the endgame , 2005, Biological reviews of the Cambridge Philosophical Society.

[105]  S. Prigge,et al.  Fatty Acid synthesis as a target for antimalarial drug discovery. , 2005, Combinatorial chemistry & high throughput screening.

[106]  H. Ohta,et al.  Three Enzyme Systems for Galactoglycerolipid Biosynthesis Are Coordinately Regulated in Plants* , 2005, Journal of Biological Chemistry.

[107]  S. Kappe,et al.  Genetically modified Plasmodium parasites as a protective experimental malaria vaccine , 2005, Nature.

[108]  M. Cassera,et al.  The Methylerythritol Phosphate Pathway Is Functionally Active in All Intraerythrocytic Stages of Plasmodium falciparum* , 2004, Journal of Biological Chemistry.

[109]  G. McFadden,et al.  The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast , 2004, Molecular microbiology.

[110]  H. Jomaa,et al.  Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. , 2004, The Journal of infectious diseases.

[111]  L. Aravind,et al.  Comparative analysis of apicomplexa and genomic diversity in eukaryotes. , 2004, Genome research.

[112]  P. T. Englund,et al.  Multiple Triclosan Targets in Trypanosoma brucei , 2004, Eukaryotic Cell.

[113]  G. Zhu,et al.  Current Progress in the Fatty Acid Metabolism in Cryptosporidium parvum1 , 2004, The Journal of eukaryotic microbiology.

[114]  S. Müller,et al.  The human malaria parasite Plasmodium falciparum has distinct organelle‐specific lipoylation pathways , 2004, Molecular microbiology.

[115]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[116]  R. Coleman,et al.  The Plasmodium falciparum PfGatp is an Endoplasmic Reticulum Membrane Protein Important for the Initial Step of Malarial Glycerolipid Synthesis* , 2004, Journal of Biological Chemistry.

[117]  Christopher J. Tonkin,et al.  Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast , 2004, Nature Reviews Microbiology.

[118]  J. Wiesner,et al.  Fosmidomycin-clindamycin for Plasmodium falciparum Infections in African children. , 2004, The Journal of infectious diseases.

[119]  J. Keithly,et al.  Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. , 2004, Molecular and biochemical parasitology.

[120]  Colin Berry,et al.  Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. , 2004, Bioorganic & medicinal chemistry.

[121]  S. Hoffman,et al.  Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine , 2003, Journal of Experimental Biology.

[122]  J. Schachtner,et al.  Apicomplexan parasites contain a single lipoic acid synthase located in the plastid , 2003, FEBS letters.

[123]  David Alland,et al.  Targeting Tuberculosis and Malaria through Inhibition of Enoyl Reductase , 2003, Journal of Biological Chemistry.

[124]  H. Lygre,et al.  Interaction of triclosan with eukaryotic membrane lipids. , 2003, European journal of oral sciences.

[125]  V. Bunik 2-Oxo acid dehydrogenase complexes in redox regulation. , 2003, European journal of biochemistry.

[126]  K. Fujisaki,et al.  Growth inhibitory effect of triclosan on equine and bovine Babesia parasites. , 2003, The American journal of tropical medicine and hygiene.

[127]  S. Prigge,et al.  The initiating steps of a type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. , 2003, Biochemistry.

[128]  Jochen Wiesner,et al.  Fosmidomycin, a Novel Chemotherapeutic Agent for Malaria , 2003, Antimicrobial Agents and Chemotherapy.

[129]  S. Ralph,et al.  A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum , 2003, Antimicrobial Agents and Chemotherapy.

[130]  P. Keeling,et al.  Recycled plastids: a 'green movement' in eukaryotic evolution. , 2002, Trends in genetics : TIG.

[131]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[132]  R. Gwilliam,et al.  Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13 , 2002, Nature.

[133]  M. J. LaGier,et al.  Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. , 2002, Gene.

[134]  M. Strath,et al.  The plastid DNA of the malaria parasite Plasmodium falciparum is replicated by two mechanisms , 2002, Molecular microbiology.

[135]  R. Haselkorn,et al.  The Carboxyltransferase Activity of the Apicoplast Acetyl-CoA Carboxylase of Toxoplasma gondii Is the Target of Aryloxyphenoxypropionate Inhibitors* , 2002, The Journal of Biological Chemistry.

[136]  Frank Schluenzen,et al.  Antibiotics targeting ribosomes: crystallographic studies. , 2002, Current drug targets. Infectious disorders.

[137]  Patricia De la Vega,et al.  Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. , 2002, The Journal of infectious diseases.

[138]  D. Fidock,et al.  Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase* , 2002, The Journal of Biological Chemistry.

[139]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[140]  J. Boothroyd,et al.  An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii , 2002, Molecular microbiology.

[141]  S. Rawsthorne Carbon flux and fatty acid synthesis in plants. , 2002, Progress in lipid research.

[142]  T. Cavalier-smith,et al.  Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses , 2002, Current Biology.

[143]  V. J. Peres,et al.  Limonene Arrests Parasite Development and Inhibits Isoprenylation of Proteins in Plasmodium falciparum , 2001, Antimicrobial Agents and Chemotherapy.

[144]  S. Ralph,et al.  The apicoplast as an antimalarial drug target. , 2001, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[145]  C. Mateo,et al.  Membranotropic effects of the antibacterial agent Triclosan. , 2001, Archives of biochemistry and biophysics.

[146]  R. Haselkorn,et al.  An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[147]  R. Haselkorn,et al.  Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[148]  N. Surolia,et al.  Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum , 2001, Nature Medicine.

[149]  D. Roos,et al.  A plastid segregation defect in the protozoan parasite Toxoplasma gondii , 2001, The EMBO journal.

[150]  R. Lyons,et al.  Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. , 2001, International journal for parasitology.

[151]  L. M. Wentzell,et al.  The complex of DNA gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex. , 2000, Journal of molecular biology.

[152]  T. Mitamura,et al.  Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. , 2000, Parasitology international.

[153]  T. Cavalier-smith,et al.  Membrane heredity and early chloroplast evolution. , 2000, Trends in plant science.

[154]  J. Keithly,et al.  Cryptosporidium parvum appears to lack a plastid genome. , 2000, Microbiology.

[155]  E. Pennisi Malarial Genome Comes Into View , 1999, Science.

[156]  R. Haselkorn,et al.  Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[157]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[158]  W. Martin,et al.  ANNOTATED ENGLISH TRANSLATION OF MERESCHKOWSKY'S 1905 PAPER 'UBER NATUR UND URSPRUNG DER CHROMATOPHOREN IM PFLANZENREICHE' , 1999 .

[159]  D. Roos,et al.  Apicomplexan plastids as drug targets. , 1999, Trends in microbiology.

[160]  V. J. Peres,et al.  Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units. , 1999, The Biochemical journal.

[161]  R J Heath,et al.  Mechanism of Triclosan Inhibition of Bacterial Fatty Acid Synthesis* , 1999, The Journal of Biological Chemistry.

[162]  G. Orphanides,et al.  Probing the binding of coumarins and cyclothialidines to DNA gyrase. , 1999, Biochemistry.

[163]  E. Maréchal,et al.  The biochemical machinery of plastid envelope membranes , 1998, Plant physiology.

[164]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[165]  S. Levy,et al.  Triclosan targets lipid synthesis , 1998, Nature.

[166]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[167]  A. E. Yeo,et al.  Indirect inhibition by antibiotics of nucleotide and deoxynucleotide biosynthesis in Plasmodium falciparum. , 1998, Southeast Asian Journal of Tropical Medicine and Public Health.

[168]  J. Domagala,et al.  DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[169]  V. Weissig,et al.  Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. , 1997, DNA and cell biology.

[170]  David S. Roos,et al.  A plastid organelle as a drug target in apicomplexan parasites , 1997, Nature.

[171]  D. Draper,et al.  Interaction of thiostrepton with an RNA fragment derived from the plastid-encoded ribosomal RNA of the malaria parasite. , 1997, RNA.

[172]  M. Strath,et al.  Thiostrepton binds to malarial plastid rRNA , 1997, FEBS letters.

[173]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[174]  R. Wilson,et al.  Extrachromosomal DNA in the Apicomplexa. , 1997, Microbiology and molecular biology reviews : MMBR.

[175]  T. McCutchan,et al.  Inhibition of Plasmodium falciparum Protein Synthesis , 1997, The Journal of Biological Chemistry.

[176]  H. Hiasa,et al.  DNA Strand Cleavage Is Required for Replication Fork Arrest by a Frozen Topoisomerase-Quinolone-DNA Ternary Complex* , 1996, The Journal of Biological Chemistry.

[177]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[178]  Geoffrey I. McFadden,et al.  Plastid in human parasites , 1996, Nature.

[179]  F. Sicheri,et al.  Single crystals of a type III antifreeze polypeptide from ocean pout. , 1994, Journal of Molecular Biology.

[180]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[181]  H. Sahm,et al.  Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. , 1993, The Biochemical journal.

[182]  M. Gardner,et al.  Subcellular fractionation of the two organelle DNAs of malaria parasites , 1992, Current Genetics.

[183]  M. Gardner,et al.  Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. , 1991, Molecular and biochemical parasitology.

[184]  M. Yamada,et al.  Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. , 1986, Journal of biochemistry.

[185]  L Margulis,et al.  Symbiosis and evolution. , 1971, Scientific American.

[186]  L. Margulis The origin of plant and animal cells. , 1971, American scientist.

[187]  E. Maréchal,et al.  Role of phosphatidic acid in plant galactolipid synthesis. , 2012, Biochimie.

[188]  P. Keeling,et al.  Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. , 2011, Protist.

[189]  A. Fairlamb,et al.  Triclosan is minimally effective in rodent malaria models , 2011, Nature Medicine.

[190]  D. Rice,et al.  Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella. , 2007, International journal for parasitology.

[191]  Joachim Schachtner,et al.  Toxoplasma gondii scavenges host‐derived lipoic acid despite its de novo synthesis in the apicoplast , 2006, The EMBO journal.

[192]  Xin Zhao,et al.  Function, attachment and synthesis of lipoic acid in Escherichia coli. , 2005, Advances in microbial physiology.

[193]  J. Champoux DNA topoisomerases: structure, function, and mechanism. , 2001, Annual review of biochemistry.

[194]  H. Vial,et al.  Malarial lipids. An overview. , 1992, Sub-cellular biochemistry.

[195]  M. Gardner,et al.  A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. , 1991, Molecular and biochemical parasitology.

[196]  H. Vial,et al.  Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. , 1990, Blood cells.

[197]  Meincke Be,et al.  Effect of irgasan on bacterial growth and its adsorption into the cell wall. , 1980 .