Cerebral cavernous malformations: from genes to proteins to disease.

Over the past half century molecular biology has led to great advances in our understanding of angio- and vasculogenesis and in the treatment of malformations resulting from these processes gone awry. Given their sporadic and familial distribution, their developmental and pathological link to capillary telangiectasias, and their observed chromosomal abnormalities, cerebral cavernous malformations (CCMs) are regarded as akin to cancerous growths. Although the exact pathological mechanisms involved in the formation of CCMs are still not well understood, the identification of 3 genetic loci has begun to shed light on key developmental pathways involved in CCM pathogenesis. Cavernous malformations can occur sporadically or in an autosomal dominant fashion. Familial forms of CCMs have been attributed to mutations at 3 different loci implicated in regulating important processes such as proliferation and differentiation of angiogenic precursors and members of the apoptotic machinery. These processes are important for the generation, maintenance, and pruning of every vessel in the body. In this review the authors highlight the latest discoveries pertaining to the molecular genetics of CCMs, highlighting potential new therapeutic targets for the treatment of these lesions.

[1]  R. Shenkar,et al.  Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity , 2010, The Journal of experimental medicine.

[2]  E. Boscolo,et al.  Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. , 2010, The New England journal of medicine.

[3]  D. Mozaffarian,et al.  Heart disease and stroke statistics--2010 update: a report from the American Heart Association. , 2010, Circulation.

[4]  A. Louvi,et al.  Apoptotic Functions of PDCD10/CCM3, the Gene Mutated in Cerebral Cavernous Malformation 3 , 2009, Stroke.

[5]  Christopher A. Jones,et al.  The Cerebral Cavernous Malformation signaling pathway promotes vascular integrity via Rho GTPases , 2009, Nature Medicine.

[6]  U. Felbor,et al.  A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells , 2008, Human molecular genetics.

[7]  H. Wolburg,et al.  ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. , 2008, Human molecular genetics.

[8]  A. Ciccodicola,et al.  ZPLD1 gene is disrupted in a patient with balanced translocation that exhibits cerebral cavernous malformations , 2008, Neuroscience.

[9]  O. Sürücü,et al.  Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in‐frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex , 2008, Human mutation.

[10]  A. Louvi,et al.  PDCD10, THE GENE MUTATED IN CEREBRAL CAVERNOUS MALFORMATION 3, IS EXPRESSED IN THE NEUROVASCULAR UNIT , 2008, Neurosurgery.

[11]  F. Gianfrancesco,et al.  Different spectra of genomic deletions within the CCM genes between Italian and American CCM patient cohorts , 2008, Neurogenetics.

[12]  R. Gautier,et al.  Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein‐1 , 2007, The FEBS journal.

[13]  M. Ginsberg,et al.  KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell–cell junctions , 2007, The Journal of cell biology.

[14]  U. Felbor,et al.  CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations , 2007, Neurogenetics.

[15]  Xiao Han,et al.  PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. , 2007, Molecular biology of the cell.

[16]  O. Sürücü,et al.  CCM1 gene deletion identified by MLPA in cerebral cavernous malformation , 2007, Neurosurgical Review.

[17]  U. Felbor,et al.  Large germline deletions and duplication in isolated cerebral cavernous malformation patients , 2007, Neurogenetics.

[18]  E. Vicaut,et al.  Genotype–phenotype correlations in cerebral cavernous malformations patients , 2006, Annals of neurology.

[19]  M. Fishman,et al.  santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish , 2006, Development.

[20]  T. Schlüter,et al.  Sorting nexin 17, a non-self-assembling and a PtdIns(3)P high class affinity protein, interacts with the cerebral cavernous malformation related protein KRIT1. , 2006, Biochemical and biophysical research communications.

[21]  R. Moussa,et al.  HÉMATOME INTRACÉRÉBRAL SPONTANÉ DU SUJET JEUNE , 2006 .

[22]  H. Matsunami,et al.  Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous malformations , 2006, Mammalian Genome.

[23]  A. Louvi,et al.  CCM2 expression parallels that of CCM1. , 2006, Stroke.

[24]  C. Liquori,et al.  Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus , 2006, Human mutation.

[25]  D. Marchuk,et al.  CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. , 2005, Human molecular genetics.

[26]  O. Wendler,et al.  Expression and function of laminins in the embryonic and mature vasculature. , 2005, Physiological reviews.

[27]  J. Gault,et al.  Biallelic Somatic and Germ Line CCM1 Truncating Mutations in a Cerebral Cavernous Malformation Lesion , 2005, Stroke.

[28]  D. Louis,et al.  Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. , 2004, The American journal of pathology.

[29]  Murat Gunel,et al.  Krev1 interaction trapped-1/cerebral cavernous malformation-1 protein expression during early angiogenesis. , 2004, Journal of neurosurgery.

[30]  R. Lifton,et al.  KRIT1/Cerebral Cavernous Malformation 1 Protein Localizes to Vascular Endothelium, Astrocytes, and Pyramidal Cells of the Adult Human Cerebral Cortex , 2004, Neurosurgery.

[31]  Dean Y. Li,et al.  Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations , 2004, Development.

[32]  P. Frérebeau,et al.  Mutations within the MGC4607 gene cause cerebral cavernous malformations. , 2004, American journal of human genetics.

[33]  C. Liquori,et al.  Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. , 2003, American journal of human genetics.

[34]  M. Dell'Acqua,et al.  Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock , 2003, Nature Cell Biology.

[35]  G. Izquierdo,et al.  Variable expression of cerebral cavernous malformations in carriers of a premature termination codon in exon 17 of the Krit1 gene , 2003, BMC neurology.

[36]  Qingbo Xu,et al.  Mechanical Stretch-Induced Apoptosis in Smooth Muscle Cells Is Mediated by &bgr;1-Integrin Signaling Pathways , 2003, Hypertension.

[37]  A. Joutel,et al.  Spectrum and expression analysis of KRIT1 mutations in 121 consecutive and unrelated patients with Cerebral Cavernous Malformations , 2002, European Journal of Human Genetics.

[38]  R. Lifton,et al.  KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  V. Braun,et al.  Mutation and expression analysis of the KRIT1 gene associated with cerebral cavernous malformations (CCM1) , 2002, Acta Neuropathologica.

[40]  D. Zwijnenburg,et al.  Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. , 2002, Nucleic acids research.

[41]  D. Verlaan,et al.  Krit1 missense mutations lead to splicing errors in cerebral cavernous malformation. , 2002, American journal of human genetics.

[42]  Erica A Golemis,et al.  KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. , 2002, Human molecular genetics.

[43]  D. Chang,et al.  Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. , 2001, Human molecular genetics.

[44]  A. Knudson,et al.  Two genetic hits (more or less) to cancer , 2001, Nature Reviews Cancer.

[45]  B. Crain,et al.  Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations , 2001, Journal of neurology, neurosurgery, and psychiatry.

[46]  M. Lucas,et al.  Germline mutations in the CCM1 gene, encoding Krit1, cause cerebral cavernous malformations , 2001, Annals of neurology.

[47]  J. Dichgans,et al.  CCM1 gene mutations in families segregating cerebral cavernous malformations , 2001, Neurology.

[48]  M. Vikkula,et al.  Identification of eight novel 5'-exons in cerebral capillary malformation gene-1 (CCM1) encoding KRIT1. , 2001, Biochimica et biophysica acta.

[49]  H. Dietz,et al.  Cloning of the murine Krit1 cDNA reveals novel mammalian 5' coding exons. , 2000, Genomics.

[50]  S. Scherer,et al.  Small GTPase Rac1: structure, localization, and expression of the human gene. , 2000, Biochemical and biophysical research communications.

[51]  I. Awad,et al.  Ultrastructural pathological features of cerebrovascular malformations: a preliminary report. , 2000, Neurosurgery.

[52]  J. Sundberg,et al.  Notch signaling is essential for vascular morphogenesis in mice. , 2000, Genes & development.

[53]  R. Wolthuis,et al.  The Small Gtpase, Rap1, Mediates Cd31-Induced Integrin Adhesion , 2000, The Journal of cell biology.

[54]  J. W. Thomas,et al.  Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). , 1999, Human molecular genetics.

[55]  A. Joutel,et al.  Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas , 1999, Nature Genetics.

[56]  S. Smerdon,et al.  The ankyrin repeat: a diversity of interactions on a common structural framework. , 1999, Trends in biochemical sciences.

[57]  Yugang Wang,et al.  cDNA cloning and expression of an apoptosis-related gene, humanTFAR15 gene , 1999, Science in China Series C: Life Sciences.

[58]  Crone,et al.  The natural history of cavernous malformations: a prospective study of 68 patients , 1999, Neurosurgery.

[59]  E. Maréchal,et al.  Genetic heterogeneity and absence of founder effect in a series of 36 French cerebral cavernous angiomas families , 1999, European Journal of Human Genetics.

[60]  L. Brunereau,et al.  Hereditary cerebral cavernous angiomas: clinical and genetic features in 57 French families , 1998, The Lancet.

[61]  J. Bos All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral , 1998, The EMBO journal.

[62]  R. Scott,et al.  Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. , 1998, Human molecular genetics.

[63]  David J. Anderson,et al.  Molecular Distinction and Angiogenic Interaction between Embryonic Arteries and Veins Revealed by ephrin-B2 and Its Receptor Eph-B4 , 1998, Cell.

[64]  D. Chang,et al.  ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin , 1997, The Journal of cell biology.

[65]  J. Testa,et al.  Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22 , 1997, Oncogene.

[66]  G. Tamburrini,et al.  Cavernous angiomas of the brain stem in children. , 1997, Pediatric neurosurgery.

[67]  W. Harper,et al.  Cerebral cavernous malformations: natural history and prognosis after clinical deterioration with or without hemorrhage. , 1997, Journal of neurosurgery.

[68]  U. Rapp,et al.  Endothelial apoptosis in Braf-deficient mice , 1997, Nature Genetics.

[69]  R. Fulton,et al.  A physical map of human chromosome 7: an integrated YAC contig map with average STS spacing of 79 kb. , 1997, Genome research.

[70]  K. J. Wilcox,et al.  Familial cerebral cavernous angioma: A gene localized to a 15‐cm interval on chromosome 7q , 1996, Annals of neurology.

[71]  L. Morrison,et al.  A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. , 1996, The New England journal of medicine.

[72]  D. Kondziolka,et al.  The natural history of cerebral cavernous malformations. , 1995, Journal of neurosurgery.

[73]  J. Weber,et al.  Refined localization of the cerebral cavernous malformation gene (CCM1) to a 4-cM interval of chromosome 7q contained in a well-defined YAC contig. , 1995, Genome research.

[74]  T. Pawson,et al.  Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein , 1995, Nature.

[75]  L. Morrison,et al.  A locus for cerebral cavernous malformations maps to chromosome 7q in two families. , 1995, Genomics.

[76]  I. Awad,et al.  Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[77]  K. J. Wilcox,et al.  Familial cerebral cavernous angioma: Clinical analysis of a family and phenotypic classification , 1995, Epilepsy Research.

[78]  J. Weber,et al.  A gene responsible for cavernous malformations of the brain maps to chromosome 7q. , 1995, Human molecular genetics.

[79]  B. Scheithauer,et al.  Angiographically Occult Vascular Malformations , 1994 .

[80]  R F Spetzler,et al.  The natural history of familial cavernous malformations: results of an ongoing study. , 1994, Journal of neurosurgery.

[81]  P. Paquis,et al.  [Intracranial cavernoma. 30 cases]. , 1993, Presse medicale.

[82]  K. Matsumoto,et al.  RSR1, a ras-like gene homologous to Krev-1 (smg21A/rap1A): role in the development of cell polarity and interactions with the Ras pathway in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[83]  John R. Robinson,et al.  Natural history of the cavernous angioma. , 1991, Journal of neurosurgery.

[84]  A. Elster,et al.  An analysis of the natural history of cavernous angiomas. , 1991, Journal of neurosurgery.

[85]  E. Green,et al.  Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. , 1991, PCR methods and applications.

[86]  R. Spetzler,et al.  Cavernous malformations of the brain stem , 1991, Acta Neurochirurgica.

[87]  S. Heim,et al.  Uterine leiomyoma cytogenetics , 1990, Genes, chromosomes & cancer.

[88]  R. Adams,et al.  Clinical presentations of vascular malformations of the brain stem: comparison of angiographically positive and negative types. , 1989, Journal of neurology, neurosurgery, and psychiatry.

[89]  M. Hadley,et al.  Cerebral cavernous malformations. Incidence and familial occurrence. , 1988, The New England journal of medicine.

[90]  B. Olofsson,et al.  Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the 'effector' region. , 1988, Oncogene.

[91]  W. Orrison,et al.  Familial cavernous angiomas of the brain in an Hispanic family , 1988, Neurology.

[92]  G. Forbes,et al.  Familial cavernous malformations of the central nervous system and retina , 1987, Annals of neurology.

[93]  L. Hayman,et al.  Familial cavernous angiomas: natural history and genetic study over a 5-year period. , 1982, American journal of medical genetics.

[94]  T. Carlow,et al.  Familial cavernous angiomas. , 1978, Archives of neurology.

[95]  S. Giombini,et al.  Cavernous angiomas of the brain , 1978, Acta Neurochirurgica.

[96]  J. Lenihan,et al.  LEAD IN CHILDREN'S HAIR , 1976, The Lancet.

[97]  J. Clark Familial occurrence of cavernous angiomata of the brain , 1970, Journal of neurology, neurosurgery, and psychiatry.

[98]  W. Mccormick The pathology of vascular ("arteriovenous") malformations. , 1966, Journal of neurosurgery.

[99]  W. Kirsten,et al.  Dose-response studies to polyoma virus in rats. , 1965, Journal of the National Cancer Institute.

[100]  J. Cumings,et al.  Cerebral angiomata in an Icelandic family. , 1947, Lancet.

[101]  P. M. Levin,et al.  MULTIPLE TELANGIECTASES OF THE BRAIN: A DISCUSSION OF HEREDITARY FACTORS IN THEIR DEVELOPMENT , 1936 .

[102]  H. Kufs Über heredofamiliäre Angiomatose des Gehirns und der Retina, ihre Beziehungen zueinander und zur Angiomatose der Haut , 1928 .

[103]  M. Ginsberg,et al.  Rap1 and its effector KRIT1/CCM1 regulate β-catenin signaling , 2010, Disease Models & Mechanisms.

[104]  C. Liquori,et al.  Deletions in CCM2 are a common cause of cerebral cavernous malformations. , 2007, American journal of human genetics.

[105]  M. Clanet,et al.  Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. , 2005, American journal of human genetics.

[106]  E. Green,et al.  Computational and experimental analyses reveal previously undetected coding exons of the KRIT1 (CCM1) gene. , 2001, Genomics.

[107]  J. de Gunzburg,et al.  Expression of the TSC2 product tuberin and its target Rap1 in normal human tissues. , 1997, The American journal of pathology.

[108]  R. Fulton,et al.  A collection of 1814 human chromosome 7-specific STSs. , 1997, Genome research.

[109]  R. Fulton,et al.  A human chromosome 7 yeast artificial chromosome (YAC) resource: construction, characterization, and screening. , 1995, Genomics.

[110]  B. Rilliet,et al.  [131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies]. , 1989, Neuro-Chirurgie.

[111]  J. Bicknell Familial cavernous angioma of the brain stem dominantly inherited in Hispanics. , 1989, Neurosurgery.

[112]  J. Kere,et al.  Chromosome 7 long arm deletion in myeloid disorders: a narrow breakpoint region in 7q22 defined by molecular mapping. , 1989, Blood.