Comparison of Dynamic Susceptibility-weighted

EricS.Paulson,PhDKathleenM.Schmainda,PhDPurpose: To investigate whether estimates of relative cerebral blood vol-ume (rCBV) in brain tumors, obtained by using dynamic sus-ceptibility-weighted contrast material–enhanced magnetic res-onance (MR) imaging vary with choice of data acquisition andpostprocessing methods.Materials andMethods:Four acquisition methods were used to collect data in 22 high-grade glioma patients, with informed written consent underHIPAA-compliant guidelines approved by the institutional re-view board. During bolus administration of a standard singledose of gadolinium-based contrast agent (0.1 mmol per kilo-gram of body weight), one of three acquisition methods wasused: gradient-echo (GRE) echo-planar imaging (echo time[TE], 30 msec; flip angle, 90°;

[1]  Glyn Johnson,et al.  Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2004, AJNR. American journal of neuroradiology.

[2]  B. Scheithauer,et al.  Histological Typing of Tumours of the Central Nervous System , 1993, World Health Organization.

[3]  J W Belliveau,et al.  Ultrafast imaging of brain tumors , 1993, Topics in magnetic resonance imaging : TMRI.

[4]  M Takahashi,et al.  Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. , 2000, AJNR. American journal of neuroradiology.

[5]  P. Black,et al.  Microvessel density is a prognostic indicator for patients with astroglial brain tumors , 1996, Cancer.

[6]  Glyn Johnson,et al.  Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. , 2002, Radiology.

[7]  B. D. Ward,et al.  Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation , 2005, Magnetic resonance in medicine.

[8]  B. Rosen,et al.  Signal‐to‐noise analysis of cerebral blood volume maps from dynamic NMR imaging studies , 1997, Journal of magnetic resonance imaging : JMRI.

[9]  K Sartor,et al.  Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. , 1997, Magnetic resonance imaging.

[10]  Glyn Johnson,et al.  Measuring blood volume and vascular transfer constant from dynamic, T  2* ‐weighted contrast‐enhanced MRI , 2004, Magnetic resonance in medicine.

[11]  Chan Hong Moon,et al.  Perfusion MR Imaging: Clinical Utility for the Differential Diagnosis of Various Brain Tumors , 2002, Korean journal of radiology.

[12]  A. Jackson,et al.  Analysis of dynamic contrast enhanced MRI. , 2004, The British journal of radiology.

[13]  M A Viergever,et al.  Simultaneous quantitative cerebral perfusion and Gd‐DTPA extravasation measurement with dual‐echo dynamic susceptibility contrast MRI , 2000, Magnetic resonance in medicine.

[14]  T Kubota,et al.  Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. , 1993, Radiology.

[15]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[16]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[17]  J W Belliveau,et al.  Functional cerebral imaging by susceptibility‐contrast NMR , 1990, Magnetic resonance in medicine.

[18]  G Johnson,et al.  Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. , 2000, AJNR. American journal of neuroradiology.

[19]  B. Rosen,et al.  High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[20]  M. Takahashi,et al.  Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. , 2001, AJNR. American journal of neuroradiology.

[21]  Glyn Johnson,et al.  Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. , 2006, Radiology.

[22]  A P Pathak,et al.  Utility of simultaneously acquired gradient‐echo and spin‐echo cerebral blood volume and morphology maps in brain tumor patients , 2000, Magnetic resonance in medicine.

[23]  P. Wen,et al.  Bevacizumab for recurrent malignant gliomas , 2008, Neurology.

[24]  R. Folkerth Histologic measures of angiogenesis in human primary brain tumors. , 2004, Cancer treatment and research.

[25]  Helen X. Chen Expanding the clinical development of bevacizumab. , 2004, The oncologist.

[26]  K Sartor,et al.  Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brain-barrier. , 1999, Magnetic resonance imaging.

[27]  T. Miyati,et al.  Dual dynamic contrast‐enhanced MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[28]  J. Gomori,et al.  Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. , 1997, Journal of neurosurgery.

[29]  A. Waldman,et al.  Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? , 2008, Radiology.

[30]  R. Folkerth Descriptive Analysis and Quantification of Angiogenesis in Human Brain Tumors , 2000, Journal of Neuro-Oncology.

[31]  I. Ercan,et al.  High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. , 2005, Clinical radiology.

[32]  G. Johnson,et al.  Dynamic susceptibility contrast MR imaging: Correlation of signal intensity changes with cerebral blood volume measurements , 2000, Journal of magnetic resonance imaging : JMRI.

[33]  L. Østergaard,et al.  Comparison of gradient‐ and spin‐echo imaging: CBF, CBV, and MTT measurements by bolus tracking , 2000, Journal of magnetic resonance imaging : JMRI.

[34]  M. Essig,et al.  Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. , 2001, International journal of radiation oncology, biology, physics.

[35]  John Sampson,et al.  Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  C. Sarkar,et al.  Angiogenic patterns and their quantitation in high grade astrocytic tumors , 2006, Journal of Neuro-Oncology.

[37]  Leif Østergaard,et al.  Evaluation of four postprocessing methods for determination of cerebral blood volume and mean transit time by dynamic susceptibility contrast imaging , 2002, Magnetic resonance in medicine.

[38]  G Johnson,et al.  Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. , 1999, Radiology.

[39]  Susan M. Chang,et al.  Dynamic susceptibility contrast perfusion imaging of radiation effects in normal‐appearing brain tissue: Changes in the first‐pass and recirculation phases , 2005, Journal of magnetic resonance imaging : JMRI.

[40]  J. Berlin,et al.  Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. , 2004, The New England journal of medicine.

[41]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[42]  Tracy T Batchelor,et al.  AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. , 2007, Cancer cell.

[43]  J. Henson,et al.  Brain Tumor Imaging in Clinical Trials , 2008, American Journal of Neuroradiology.

[44]  B R Rosen,et al.  Echo-planar MR determination of relative cerebral blood volume in human brain tumors: T1 versus T2 weighting. , 1996, AJNR. American journal of neuroradiology.