Design of Single-Product Campaign Batch Plants under Demand Uncertainty

A new method is introduced for optimally designing multiproduct batch plants under the single-product campaign (SPC) production mode. Uncertain future product demands are described with normal probability distributions, and more than one processing unit of equal size are allowed per stage. At the expense of imposing the normality assumption for product demand uncertainty and the SPC production mode, the original two-stage stochastic optimization problem is transformed into a deterministic mixed-integer nonlinear programming problem without relying on implicit or explicit discretization of the uncertain variables. This is accomplished through the explicit solution of the inner problem and the analytical integration overall product demand realizations. This problem representation and solution strategy result in savings of orders of magnitude over existing methods in computational requirements.

[1]  S. Kataoka A Stochastic Programming Model , 1963 .

[2]  W. H. Evers,et al.  A New Model for Stochastic Linear Programming , 1967 .

[3]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[4]  R. Sargent,et al.  Optimum Design of Multipurpose Chemical Plants , 1979 .

[5]  I. Grossmann,et al.  A mixed-integer nonlinear programming algorithm for process systems synthesis , 1986 .

[6]  I. Grossmann,et al.  Relaxation strategy for the structural optimization of process flow sheets , 1987 .

[7]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..

[8]  I. Grossmann,et al.  Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis , 1988 .

[9]  Ignacio E. Grossmann,et al.  Multiperiod LP models for simultaneous production planning and scheduling in multiproduct batch plants , 1990 .

[10]  Ignacio E. Grossmann,et al.  Incorporating scheduling in the optimal design of multiproduct batch plants , 1989 .

[11]  Gintaras V. Reklaitis,et al.  The design of multiproduct batch plants under uncertainty with staged expansion , 1989 .

[12]  Ignacio E. Grossmann,et al.  Computational experience with dicopt solving MINLP problems in process systems engineering , 1989 .

[13]  C. Pantelides,et al.  Design of multipurpose batch plants with uncertain production requirements , 1992 .

[14]  I. Grossmann,et al.  Mixed-integer linear programming reformulations for batch process design with discrete equipment sizes , 1992 .

[15]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[16]  Ignacio E. Grossmann,et al.  Evaluation and optimization of stochastic flexibility in multiproduct batch plants , 1992 .

[17]  David W.T. Rippin,et al.  Batch process systems engineering: A retrospective and prospective review , 1993 .

[18]  Ignacio E. Grossmann,et al.  Design optimization of stochastic flexibility , 1993 .

[19]  G. Reklaitis,et al.  DESIGN OF BATCH CHEMICAL PLANTS UNDER MARKET UNCERTAINTY , 1994 .

[20]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[21]  Efstratios N. Pistikopoulos,et al.  Design of multiproduct batch plants with uncertain demands , 1995 .

[22]  Efstratios N. Pistikopoulos,et al.  Batch Plant Design and Operations under Uncertainty , 1996 .

[23]  N. Sahinidis,et al.  Optimization in Process Planning under Uncertainty , 1996 .

[24]  Costas D. Maranas,et al.  Multiperiod Planning and Scheduling of Multiproduct Batch Plants under Demand Uncertainty , 1997 .

[25]  C. Floudas,et al.  Global optimization in multiproduct and multipurpose batch design under uncertainty , 1997 .

[26]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..