Microfluidics in amino acid analysis

Microfluidic devices have been widely used to derivatize, separate, and detect amino acids employing many different strategies. Virtually zero‐dead volume interconnections and fast mass transfer in small volume microchannels enable dramatic increases in on‐chip derivatization reaction speed, while only minute amounts of sample and reagent are needed. Due to short channel path, fast subsecond separations can be carried out. With sophisticated miniaturized detectors, the whole analytical process can be integrated on one platform. This article reviews developments of lab‐on‐chip technology in amino acid analysis, it shows important design features such as sample preconcentration, precolumn and postcolumn amino acid derivatization, and unlabeled and labeled amino acid detection with focus on advanced designs. The review also describes important biomedical and space exploration applications of amino acid analysis on microfluidic devices.

[1]  Elisabeth Verpoorte,et al.  Comparison of the performance characteristics of poly(dimethylsiloxane) and Pyrex microchip electrophoresis devices for peptide separations. , 2003, Journal of chromatography. A.

[2]  Nigel P. Beard,et al.  Integrated on‐chip derivatization and electrophoresis for the rapid analysis of biogenic amines , 2004, Electrophoresis.

[3]  D. J. Harrison,et al.  Microchip‐based capillary electrochromatography using packed beds , 2003, Electrophoresis.

[4]  Gang Chen,et al.  Fast and simple sample introduction for capillary electrophoresis microsystems. , 2004, The Analyst.

[5]  A. Manz,et al.  Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure. , 1996, Analytical chemistry.

[6]  Susan M Lunte,et al.  In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. , 2002, Analytical chemistry.

[7]  Plastic substrates based separation channels in electromigration techniques. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[8]  Peter C Hauser,et al.  Determination of biochemical species on electrophoresis chips with an external contactless conductivity detector , 2005, Electrophoresis.

[9]  A Manz,et al.  Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly(dimethylsiloxane) coated SU-8 masters. , 2003, Lab on a chip.

[10]  Zhao-Lun Fang,et al.  Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement. , 2006, Analytical chemistry.

[11]  J Michael Ramsey,et al.  Microchip separations in reduced-gravity and hypergravity environments. , 2005, Analytical chemistry.

[12]  A. Manz,et al.  Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights , 1993 .

[13]  Alberto Escarpa,et al.  Micromachined Separation Chips with Post‐Column Enzymatic Reactions of “Class” Enzymes And End‐Column Electrochemical Detection: Assays of Amino Acids , 2002 .

[14]  Gang Chen,et al.  Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. , 2004, Analytical chemistry.

[15]  J. Bada Origins of homochirality , 1995, Nature.

[16]  Saverio Mannino,et al.  Microchip capillary electrophoresis with amperometric detection for rapid separation and detection of phenolic acids. , 2004, Journal of chromatography. A.

[17]  M. L. Lee,et al.  Planar thin film device for capillary electrophoresis. , 2005, Lab on a chip.

[18]  A. Ewing,et al.  Parallel analysis with optically gated sample introduction on a multichannel microchip. , 2002, Analytical chemistry.

[19]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[20]  Gang Chen,et al.  Microchip capillary electrophoresis with electrochemical detector for fast measurements of aromatic amino acids. , 2003, Talanta.

[21]  D. Belder,et al.  Subsecond chiral separations on a microchip , 2004, Electrophoresis.

[22]  Angel Ríos,et al.  Challenges of analytical microsystems , 2006 .

[23]  Zhao-Lun Fang,et al.  Bonding of glass microfluidic chips at room temperatures. , 2004, Analytical chemistry.

[24]  Sam F. Y. Li,et al.  High‐speed chiral separations on microchip electrophoresis devices , 2000, Electrophoresis.

[25]  K. Fluri,et al.  A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device. , 2001, The Analyst.

[26]  Adam T Woolley,et al.  Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. , 2005, Analytical chemistry.

[27]  Martin Pumera,et al.  Microchip Separation and Electrochemical Detection of Amino Acids and Peptides Following Precolumn Derivatization with Naphthalene-2,3-dicarboxyaldehyde , 2003 .

[28]  J Wang,et al.  Micromachined separation chips with a precolumn reactor and end-column electrochemical detector. , 2000, Analytical chemistry.

[29]  Nicholas A. Cellar,et al.  Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. , 2005, Analytical chemistry.

[30]  Martin Pumera,et al.  Contactless conductivity detector for microchip capillary electrophoresis. , 2002, Analytical chemistry.

[31]  Martin Pumera,et al.  Towards disposable lab‐on‐a‐chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection , 2002, Electrophoresis.

[32]  J. Michael Ramsey,et al.  Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor , 1994 .

[33]  L. Locascio,et al.  Microfluidic temperature gradient focusing. , 2002, Analytical chemistry.

[34]  Jeffrey L. Bada,et al.  Peer Reviewed: Detecting Amino Acids on Mars , 1996 .

[35]  Richard G Compton,et al.  Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. , 2006, Nano letters.

[36]  Adam T Woolley,et al.  Thermal bonding of polymeric capillary electrophoresis microdevices in water. , 2003, Analytical chemistry.

[37]  A. Manz,et al.  Micro total analysis systems. Latest advancements and trends. , 2006, Analytical chemistry.

[38]  Alberto Escarpa,et al.  CE microchips: An opened gate to food analysis , 2007, Electrophoresis.

[39]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[40]  William H. Grover,et al.  Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Mo,et al.  A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis. , 2007, Talanta.

[42]  Andreas Manz,et al.  High-speed free-flow electrophoresis on chip. , 2003, Analytical chemistry.

[43]  Kurt Seiler,et al.  Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip , 1994 .

[44]  C. Culbertson,et al.  High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips. , 2006, The Analyst.

[45]  H. Cai,et al.  A rigid poly(dimethylsiloxane) sandwich electrophoresis microchip based on thin‐casting method , 2006, Electrophoresis.

[46]  Gang Chen,et al.  Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. , 2004, The Analyst.

[47]  Haifang Li,et al.  Chiral separation of dansyl amino acids by PDMS microchip gel monolithic column electrochromatography with γ-cyclodextrin bonded in polyacrylamide , 2005 .

[48]  J. Landers,et al.  Indirect fluorescence detection of amino acids on electrophoretic microchips. , 2000, Analytical chemistry.

[49]  V. Dolnik,et al.  Capillary electrophoresis on microchip , 2000, Electrophoresis.

[50]  C. Culbertson,et al.  Microchip devices for high-efficiency separations. , 2000, Analytical chemistry.

[51]  Peter C Hauser,et al.  Contactless conductivity detection of selected organic ions in on‐chip electrophoresis , 2004, Electrophoresis.

[52]  D. J. Harrison,et al.  Integrated self‐calibration via electrokinetic solvent proportioning for microfluidic immunoassays , 2001, Electrophoresis.

[53]  K. Otsuka,et al.  Effects of the length and modification of the separation channel on microchip electrophoresis-mass spectrometry for analysis of bioactive compounds. , 2004, Journal of chromatography. A.

[54]  H. Lingeman,et al.  Derivatization in capillary electrophoresis. , 1998, Journal of chromatography. A.

[55]  S. Lunte,et al.  Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry. , 2001, The Analyst.

[56]  F. Couderc,et al.  Recent advances in amino acid analysis by capillary electrophoresis , 2001, Electrophoresis.

[57]  Alexander Dömling,et al.  Recent developments in isocyanide based multicomponent reactions in applied chemistry. , 2006, Chemical reviews.

[58]  Adam T Woolley,et al.  Fabrication of calcium fluoride capillary electrophoresis microdevices for on-chip infrared detection. , 2004, Journal of chromatography. A.

[59]  Daniel T Chiu,et al.  Rapid prototyping of thermoset polyester microfluidic devices. , 2004, Analytical chemistry.

[60]  T. Shepodd,et al.  Electrochromatography in microchips: reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths. , 2002, Analytical chemistry.

[61]  J. Hahn,et al.  Precolumn diastereomerization and micellar electrokinetic chromatography on a plastic microchip: Rapid chiral analysis of amino acids , 2005, Electrophoresis.

[62]  Regina Luttge,et al.  Comparison of capillary zone electrophoresis performance of powder‐blasted and hydrogen fluoride‐etched microchannels in glass , 2003, Electrophoresis.

[63]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[64]  Andreas E. Guber,et al.  High-voltage contactless conductivity-detection for lab-on-chip devices using external electrodes on the holder , 2003 .

[65]  Richard G Compton,et al.  Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes. , 2006, Angewandte Chemie.

[66]  M. Engel,et al.  Distribution and enantiomeric composition of amino acids in the Murchison meteorite , 1982, Nature.

[67]  D. J. Harrison,et al.  Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips. , 1996, Analytical chemistry.

[68]  Shawn D. Llopis,et al.  Contact conductivity detection in poly(methyl methacrylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. , 2002, Analytical chemistry.

[69]  Optically gated vacancy electrophoresis in microfluidic devices , 2003 .

[70]  J. Eijkel,et al.  A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. , 2001, Analytical chemistry.

[71]  Robert T Kennedy,et al.  Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters. , 2005, Analytical chemistry.

[72]  R. Hergenröder,et al.  Determination of selenoamino acids by coupling of isotachophoresis/capillary zone electrophoresis on a PMMA microchip , 2002 .

[73]  Fahima Ouchen,et al.  An integrated solid‐phase extraction system for sub‐picomolar detection , 2002, Electrophoresis.

[74]  D. J. Harrison,et al.  Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment , 2001, Electrophoresis.

[75]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[76]  Andrew W. Knight,et al.  A review of recent trends in analytical applications of electrogenerated chemiluminescence , 1999 .

[77]  Weidong Cao,et al.  Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector. , 2003, Analytical chemistry.

[78]  X. Xia,et al.  Simple method for the separation and detection of native amino acids and the identification of electroactive and non-electroactive analytes. , 2005, Journal of chromatography. A.

[79]  Martin Pumera,et al.  Microchip-based electrochromatography: designs and applications. , 2005, Talanta.

[80]  Andrew G. Ewing,et al.  Copper wire amperometric detector for capillary electrophoresis , 1991 .

[81]  D P Glavin,et al.  Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. , 1999, Analytical chemistry.

[82]  Bingcheng Lin,et al.  Parallel analysis of biomolecules on a microfabricated capillary array chip , 2006, Electrophoresis.

[83]  Masaru Kato,et al.  Rapid analysis of amino acids in Japanese green tea by microchip electrophoresis using plastic microchip and fluorescence detection. , 2003, Journal of chromatography. A.

[84]  H. Brückner,et al.  Liquid chromatographic determination of d- and l-amino acids by derivatization with o-phthaldialdehyde and chiral thiols: Applications with reference to biosciences , 1994 .

[85]  Q. Fang,et al.  Enhancement of signal-to-noise level by synchronized dual wavelength modulation for light emitting diode fluorimetry in a liquid-core-waveguide microfluidic capillary electrophoresis system. , 2005, Talanta.

[86]  Richard P. Baldwin,et al.  Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode , 1994 .

[87]  Q. Fang,et al.  A high-throughput continuous sample introduction interface for microfluidic chip-based capillary electrophoresis systems. , 2002, Analytical chemistry.

[88]  Martin Pumera,et al.  New materials for electrochemical sensing VII. Microfluidic chip platforms , 2006 .

[89]  James P. Landers,et al.  Laser-induced fluorescence detection on multichannel electrophoretic microchips using microprocessor-embedded acousto-optic laser beam scanning , 2002, IEEE Transactions on Biomedical Engineering.

[90]  Haifang Li,et al.  Development of a gel monolithic column polydimethylsiloxane microfluidic device for rapid electrophoresis separation. , 2006, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[91]  Katsumi Uchiyama,et al.  A compactly integrated laser‐induced fluorescence detector for microchip electrophoresis , 2004, Electrophoresis.

[92]  J. Michael Ramsey,et al.  Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip , 1994 .

[93]  E. Wang,et al.  Analytical applications of the electrochemiluminescence of tris (2,2'-bipyridyl) ruthenium and its derivatives , 2004 .

[94]  A. Skelley,et al.  Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrial exploration. , 2003, Journal of chromatography. A.

[95]  Andreas Manz,et al.  Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? , 2005, Analytical and bioanalytical chemistry.