In vivo functional localization of the temporal monocular crescent representation in human primary visual cortex

The temporal monocular crescent (TMC) is the most peripheral portion of the visual field whose perception relies solely on input from the ipsilateral eye. According to a handful of post-mortem histological studies in humans and non-human primates, the TMC is represented visuotopically within the most anterior portion of the primary visual cortical area (V1). However, functional evidence of the TMC visuotopic representation in human visual cortex is rare, mostly due to the small size of the TMC representation (∼6% of V1) and due to the technical challenges of stimulating the most peripheral portion of the visual field inside the MRI scanner. In this study, by taking advantage of custom-built MRI-compatible visual stimulation goggles with curved displays, we successfully stimulated the TMC region of the visual field in eight human subjects, half of them right-eye dominant, inside a 3 T MRI scanner. This enabled us to localize the representation of TMC, along with the blind spot representation (another visuotopic landmark in V1), in all volunteers, which match the expected spatial pattern based on prior anatomical studies. In all hemispheres, the TMC visuotopic representation was localized along the peripheral border of V1, within the most anterior portion of the calcarine sulcus, without any apparent extension into the second visual area (V2). We further demonstrate the reliability of this localization within/across experimental sessions, and consistency in the spatial location of TMC across individuals after accounting for inter-subject structural differences.

[1]  D G Pelli,et al.  A binocular fiberscope for presenting visual stimuli during fMRI. , 1997, Spatial vision.

[2]  A. V. van den Berg,et al.  Adjacent visual representations of self-motion in different reference frames , 2011, Proceedings of the National Academy of Sciences.

[3]  Simo Vanni,et al.  fMRI of peripheral visual field representation , 2007, Clinical Neurophysiology.

[4]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[5]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[6]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[7]  C. Galletti,et al.  Wide-Field Retinotopy Defines Human Cortical Visual Area V6 , 2006, The Journal of Neuroscience.

[8]  Qiyong Guo,et al.  Retinotopic mapping of the peripheral visual field to human visual cortex by functional magnetic resonance imaging , 2012, Human brain mapping.

[9]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[10]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[11]  Jinglong Wu,et al.  Development of a method to present wide-view visual stimuli in MRI for peripheral visual studies , 2013, Journal of Neuroscience Methods.

[12]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[13]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[14]  Ruey-Song Huang,et al.  Visual stimulus presentation using fiber optics in the MRI scanner , 2008, Journal of Neuroscience Methods.

[15]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.

[16]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[17]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[18]  Leslie G. Ungerleider,et al.  Scene-Selective Cortical Regions in Human and Nonhuman Primates , 2011, The Journal of Neuroscience.

[19]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[20]  E. T. Bullmore,et al.  Asymmetrical Activation of Human Visual Cortex Demonstrated by Functional MRI with Monocular Stimulation , 2001, NeuroImage.

[21]  R. Rosenholtz,et al.  A summary statistic representation in peripheral vision explains visual search. , 2009, Journal of vision.

[22]  V. Greco,et al.  A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners , 2016, Behavior research methods.

[23]  Jens Frahm,et al.  Simultaneous recordings of visual evoked potentials and BOLD MRI activations in response to visual motion processing , 2005, NMR in biomedicine.

[24]  Frederik Barkhof,et al.  The functional basis of ocular dominance: functional MRI (fMRI) findings , 1996, Neuroscience Letters.

[25]  J. Horton,et al.  Intrinsic Variability of Ocular Dominance Column Periodicity in Normal Macaque Monkeys , 1996, The Journal of Neuroscience.

[26]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[27]  F M de Monasterio,et al.  Arrangement of ocular dominance columns in human visual cortex. , 1990, Archives of ophthalmology.

[28]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[29]  Shahin Nasr,et al.  Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3 , 2016, The Journal of Neuroscience.

[30]  James Hong,et al.  A Platform for Combining Virtual Reality Experiments with Functional Magnetic Resonance Imaging , 2003, Cyberpsychology Behav. Soc. Netw..

[31]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[32]  Stephen A. Engel,et al.  Interocular rivalry revealed in the human cortical blind-spot representation , 2001, Nature.

[33]  A Pollatsek,et al.  Role of spatial location in integration of pictorial information across saccades. , 1990, Journal of experimental psychology. Human perception and performance.

[34]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[35]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[36]  Robert F Hess,et al.  Quantifying sensory eye dominance in the normal visual system: a new technique and insights into variation across traditional tests. , 2010, Investigative ophthalmology & visual science.

[37]  Hugh R. Wilson,et al.  10 – THE PERCEPTION OF FORM: Retina to Striate Cortex , 1989 .

[38]  Melissa L. Rice,et al.  Results of ocular dominance testing depend on assessment method. , 2008, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[39]  E. L. Schwartz,et al.  Multi-area visuotopic map complexes in macaque striate and extra-striate cortex , 2006, Vision Research.

[40]  W Neil Charman,et al.  Thomas Young's contribution to visual optics: the Bakerian Lecture "on the mechanism of the eye". , 2010, Journal of vision.

[41]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[42]  R Gattass,et al.  Visual topography of V1 in the Cebus monkey , 1987, The Journal of comparative neurology.

[43]  Thomas Young,et al.  II. The Bakerian Lecture. On the mechanism of the eye , 2022, Philosophical Transactions of the Royal Society of London.

[44]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M D Anes,et al.  Roles of object-file review and type priming in visual identification within and across eye fixations. , 1994, Journal of experimental psychology. Human perception and performance.

[46]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[47]  Eric J. Seibel,et al.  A Magnet-Friendly Virtual Reality Fiberoptic Image Delivery System , 2003, Cyberpsychology Behav. Soc. Netw..

[48]  Thom Carney,et al.  Electrophysiological estimate of human cortical magnification , 2001, Clinical Neurophysiology.

[49]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[50]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[51]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[52]  Jess R. Kerlin,et al.  Cortical representation of space around the blind spot. , 2005, Journal of neurophysiology.

[53]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.