Size-Tuning of WSe2 Flakes for High Efficiency Inverted Organic Solar Cells.

The development of large-scale production methods of two-dimensional (2D) crystals, with on-demand control of the area and thickness, is mandatory to fulfill the potential applications of such materials for photovoltaics. Inverted bulk heterojunction (BHJ) organic solar cell (OSC), which exploits a polymer-fullerene binary blend as the active material, is one potentially important application area for 2D crystals. A large ongoing effort is indeed currently devoted to the introduction of 2D crystals in the binary blend to improve the charge transport properties. While it is expected that the nanoscale domains size of the different components of the blend will significantly impact the performance of the OSC, to date, there is no evidence of quantitative information on the interplay between 2D crystals and fullerene domains size. Here, we demonstrate that by matching the size of WSe2 few-layer 2D crystals, produced by liquid-phase exfoliation, with that of the PC71BM fullerene domain in BHJ OSCs, we obtain power conversion efficiencies (PCEs) of ∼9.3%, reaching a 15% improvement with respect to standard binary devices (PCE = 8.10%), i.e., without the addition of WSe2 flakes. This is the highest ever reported PCE for 2D material-based OSCs, obtained thanks to the enhanced exciton generation and exciton dissociation at the WSe2-fullerene interface and also electron extraction to the back metal contact as a consequence of a balanced charge carriers mobility. These results push forward the implementation of transition-metal dichalcogenides to boost the performance of BHJ OSCs.

[1]  Zhipei Sun,et al.  Black phosphorus polycarbonate polymer composite for pulsed fibre lasers , 2016 .

[2]  J. Coleman,et al.  2D‐Crystal‐Based Functional Inks , 2016, Advanced materials.

[3]  L. Cinà,et al.  Few‐Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells , 2016 .

[4]  Bruno Scrosati,et al.  Binder-free graphene as an advanced anode for lithium batteries , 2016 .

[5]  A. K. Alves,et al.  Solution-processable exfoliation and suspension of atomically thin WSe2. , 2016, Journal of colloid and interface science.

[6]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[7]  J. Furdyna,et al.  Scanning Tunneling Microscopy and Spectroscopy of Air Exposure Effects on Molecular Beam Epitaxy Grown WSe2 Monolayers and Bilayers. , 2016, ACS nano.

[8]  Yanming Sun,et al.  Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency , 2016 .

[9]  Byung-Kwan Cho,et al.  DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. , 2016, ACS applied materials & interfaces.

[10]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[11]  S. Lau,et al.  Tuning nonlinear optical absorption properties of WS₂ nanosheets. , 2015, Nanoscale.

[12]  R. Wallace,et al.  Erratum: “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors” [Appl. Phys. Lett. 103, 053513 (2013)] , 2015 .

[13]  L. Chu,et al.  Halide-Assisted Atmospheric Pressure Growth of Large WSe2 and WS2 Monolayer Crystals , 2015, 1509.00555.

[14]  Haiyan Sun,et al.  Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach , 2015 .

[15]  Xiaogan Liang,et al.  Photovoltaic response in pristine WSe2 layers modulated by metal-induced surface-charge-transfer doping , 2015 .

[16]  Wei You,et al.  Status and prospects for ternary organic photovoltaics , 2015, Nature Photonics.

[17]  E. Kymakis,et al.  Functionalized Graphene as an Electron‐Cascade Acceptor for Air‐Processed Organic Ternary Solar Cells , 2015 .

[18]  H. Luo,et al.  Size‐Dependent Optical Absorption of Layered MoS2 and DNA Oligonucleotides Induced Dispersion Behavior for Label‐Free Detection of Single‐Nucleotide Polymorphism , 2015 .

[19]  A. Krasheninnikov,et al.  Three-fold rotational defects in two-dimensional transition metal dichalcogenides , 2015, Nature Communications.

[20]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[21]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[22]  T. Nagahama,et al.  Multilayered MoS2 nanoflakes bound to carbon nanotubes as electron acceptors in bulk heterojunction inverted organic solar cells , 2015 .

[23]  Yucheng Jiang,et al.  Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer , 2015, Scientific Reports.

[24]  J. Dadap,et al.  Layer-dependent electronic structure of an atomically heavy two-dimensional dichalcogenide , 2015 .

[25]  J. Cheon,et al.  Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes , 2015, Nature Communications.

[26]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[27]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[28]  M. Pumera,et al.  Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. , 2014, ACS nano.

[29]  Thomas Kirchartz,et al.  Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM , 2014 .

[30]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[31]  G. Steele,et al.  Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. , 2014, Nano letters.

[32]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[33]  A. Jen,et al.  Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer , 2014, Advanced materials.

[34]  Christopher M. Proctor,et al.  Mobility Guidelines for High Fill Factor Solution‐Processed Small Molecule Solar Cells , 2014, Advanced materials.

[35]  A. Ferrari,et al.  Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition , 2014 .

[36]  Niall McEvoy,et al.  Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets , 2014, Nature Communications.

[37]  Eric Guiot,et al.  Development of high efficiency wafer bonded 4-junction solar cells for concentrator photovoltaic applications , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[38]  U. Waghmare,et al.  Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  Chain‐Shu Hsu,et al.  Applications of functional fullerene materials in polymer solar cells , 2014 .

[40]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[41]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[42]  Keyur K. Gandhi,et al.  Hybrid Graphene-Metal Oxide Solution Processed Electron Transport Layers for Large Area High-Performance Organic Photovoltaics , 2014, Advanced materials.

[43]  Ifor D. W. Samuel,et al.  Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells , 2013, Nature Communications.

[44]  Christopher M. Proctor,et al.  Charge carrier recombination in organic solar cells , 2013 .

[45]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[46]  Jer-Lai Kuo,et al.  Orbital analysis of electronic structure and phonon dispersion in MoS 2 , MoSe 2 , WS 2 , and WSe 2 monolayers under strain , 2013 .

[47]  G. Garcia‐Belmonte,et al.  Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness , 2013 .

[48]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[49]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[50]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[51]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[52]  Matthew Y. Sfeir,et al.  Polymer bulk heterojunction solar cells employing Förster resonance energy transfer , 2013, Nature Photonics.

[53]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[54]  G. Eda,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[55]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[56]  F. M. Peeters,et al.  Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 , 2013, 1303.5861.

[57]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[58]  Robert A. Street,et al.  Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. , 2013, Journal of the American Chemical Society.

[59]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[60]  A. Ferrari,et al.  Production and processing of graphene and 2d crystals , 2012 .

[61]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[62]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[63]  Hisato Yamaguchi,et al.  Coherent atomic and electronic heterostructures of single-layer MoS2. , 2012, ACS nano.

[64]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[65]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[66]  B. Thompson,et al.  Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. , 2012, Journal of the American Chemical Society.

[67]  Jonathan N. Coleman,et al.  Correction to “Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers” , 2012 .

[68]  Mauro Morana,et al.  Exciton diffusion length in narrow bandgap polymers , 2012 .

[69]  Mustafa Lotya,et al.  Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersability of Exfoliated Nanosheets Varies Only Weakly between Compounds /v Sol (mol/ml) Characterisation of Dispersions , 2022 .

[70]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[71]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[72]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[73]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[74]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[75]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[76]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[77]  Hao‐Li Zhang,et al.  A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. , 2011, Angewandte Chemie.

[78]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[79]  Jenny Nelson,et al.  Polymer:fullerene bulk heterojunction solar cells , 2011 .

[80]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[81]  Juliane Kniepert,et al.  Photogeneration and Recombination in P3HT/PCBM Solar Cells Probed by Time-Delayed Collection Field Experiments , 2011 .

[82]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[83]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[84]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[85]  G. Privitera,et al.  Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation , 2010 .

[86]  R. Hamilton,et al.  Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices , 2010, Proceedings of the National Academy of Sciences.

[87]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[88]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[89]  J. Coleman,et al.  High-concentration solvent exfoliation of graphene. , 2010, Small.

[90]  Thuc-Quyen Nguyen,et al.  Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells , 2009 .

[91]  C. Brabec,et al.  Recombination‐Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells , 2009 .

[92]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[93]  J. Coleman,et al.  Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions , 2008, 0809.2690.

[94]  Jean M. J. Fréchet,et al.  Polymer—Fullerene Composite Solar Cells. , 2008 .

[95]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[96]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[97]  I. Parkin,et al.  Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—highly hydrophobic sticky surfaces , 2006 .

[98]  I. Parkin,et al.  Atmospheric Pressure CVD of Molybdenum Diselenide Films on Glass , 2006 .

[99]  Valentin D. Mihailetchi,et al.  Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells , 2006 .

[100]  Valentin D. Mihailetchi,et al.  Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells , 2005 .

[101]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[102]  M. Agarwal,et al.  Band gap in tungsten sulphoselenide single crystals determined by the optical absorption method , 2005 .

[103]  V. Mihailetchi,et al.  Compositional dependence of the performance of poly(p-phenylene vinylene) , 2005 .

[104]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[105]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[106]  Claire J. Carmalt,et al.  Atmospheric pressure chemical vapour deposition of WS2 thin films on glass , 2003 .

[107]  Y. Zubavichus,et al.  Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds , 2003 .

[108]  Donal D. C. Bradley,et al.  Quantifying the efficiency of electrodes for positive carrier injection into poly(9,9-dioctylfluorene) and representative copolymers , 2001 .

[109]  G. Frey,et al.  Raman and resonance Raman investigation of MoS 2 nanoparticles , 1999 .

[110]  S. Harding,et al.  On the hydrodynamic analysis of macromolecular conformation. , 1995, Biophysical chemistry.

[111]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[112]  Wold,et al.  Preparation of WSe2 surfaces with high photoactivity. , 1992, Physical review. B, Condensed matter.

[113]  C. Sourisseau,et al.  Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2☆ , 1991 .

[114]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[115]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[116]  M. Izumi,et al.  Raman Scattering and Infrared Reflectance in 2H-MoSe2 , 1980 .

[117]  A. Heller,et al.  Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes , 1980 .

[118]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[119]  M. Cardona,et al.  X-Ray and Far-uv Photoemission from Amorphous and Crystalline Films of Se and Te , 1973 .

[120]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[121]  R. B. Murray,et al.  The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials , 1972 .

[122]  T. Wieting,et al.  Lattice Mode Degeneracy in Mo S 2 and Other Layer Compounds , 1970 .

[123]  R. Frindt The optical properties of single crystals of WSe2 and MoTe2 , 1963 .

[124]  F. Perrin,et al.  Mouvement brownien d'un ellipsoide - I. Dispersion diélectrique pour des molécules ellipsoidales , 1934 .

[125]  E. Kymakis,et al.  Plasmonic Backscattering Effect in High‐Efficient Organic Photovoltaic Devices , 2016 .

[126]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[127]  M. Pumera,et al.  Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): An electrochemical impedance spectroscopic investigation , 2015 .

[128]  Zhipei Sun,et al.  Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics , 2014 .

[129]  John R. Tumbleston,et al.  Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells , 2013 .

[130]  A. Splendiani,et al.  Emerging Photoluminescence in Monolayer , 2010 .

[131]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .