Control of GaAs Schottky barrier height using a thin nonstoichiometric GaAs interface layer grown by low‐temperature molecular beam epitaxy

This article proposes a novel Schottky junction structure on (100) GaAs, which has a thin nonstoichiometric GaAs interface layer. A 10‐ to 20‐A‐thick As‐rich or Ga‐rich interface layer was grown by low‐temperature molecular beam epitaxy at 200 °C, and placed at the metal‐GaAs junction interface. Independent of metal work functions, the interlayer insertion causes a wide variation in barrier heights in the range of 0.5–1.0 eV on n‐GaAs, and 0.4–0.9 eV on p‐GaAs. The barrier height variation is attributed to a strong Fermi‐level pinning controlled by stoichiometric defect levels in the interlayer. The levels were characterized by isothermal capacitance transient spectroscopy of a metal‐insulator‐semiconductor structure having a nonstoichiometric interlayer between an aluminum nitride insulating film and GaAs. High concentrations of defect levels were confirmed around 0.4 eV below the conduction band edge in the As‐rich interlayer and around 0.3 eV above the valence band edge in the Ga‐rich interlayer. An an...

[1]  D. Look,et al.  Shifted x‐ray photoelectron peak in molecular beam epitaxial GaAs grown at 200 °C , 1992 .

[2]  Park,et al.  Cryogenic growth of Al nitride on GaAs(110): X-ray-photoemission spectroscopy and inverse-photoemission spectroscopy. , 1993, Physical review. B, Condensed matter.

[3]  G. Landgren,et al.  Al–GaAs (001) Schottky barrier formation , 1983 .

[4]  H. Hayakawa,et al.  Reactive molecular beam epitaxy of aluminium nitride , 1979 .

[5]  J. Woodall,et al.  GaAs metallization: Some problems and trends , 1981 .

[6]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[7]  Michael R. Melloch,et al.  Substrate temperature dependence of arsenic precipitate formation in AlGaAs and GaAs , 1991 .

[8]  S. Fujieda,et al.  Improvement of the Electrical Properties of the AlN/GaAs MIS System and Their Thermal Stability by GaAs Surface Stoichiometry Control , 1988 .

[9]  B. Shklovskii HOPPING CONDUCTION IN LIGHTLY DOPED SEMICONDUCTORS (REVIEW). , 1973 .

[10]  J. Kortright,et al.  Structural properties of As‐rich GaAs grown by molecular beam epitaxy at low temperatures , 1989 .

[11]  Yongli Gao,et al.  Growth of Al nitride layers on GaAs(100) by reaction with condensed ammonia , 1991 .

[12]  C. Duke,et al.  A microscopic model of metal–semiconductor contacts , 1985 .

[13]  S. Fujieda,et al.  Characterization of donorlike interface states which play a dominant role in the surface potential pinning in AlN/GaAs interfaces , 1990 .

[14]  W. I. Wang The dependence of Al Schottky barrier height on surface conditions of GaAs and AlAs grown by molecular beam epitaxy , 1983 .

[15]  David C. Look,et al.  Infrared absorption of deep defects in molecular-beam-epitaxial GaAs layers grown at 200 °C: Observation of an EL 2-like defect , 1990 .

[16]  Hongen Shen,et al.  Fermi level pinning in low-temperature molecular beam epitaxial GaAs , 1992 .

[17]  Evans,et al.  Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL2-like band. , 1990, Physical review. B, Condensed matter.

[18]  M. Manfra,et al.  New MBE buffer used to eliminate backgating in GaAs MESFETs , 1988, IEEE Electron Device Letters.

[19]  M. Hollis,et al.  Picosecond GaAs-Based Photoconductive Optoelectronic Detectors , 1989, OSA Proceedings on Picosecond Electronics and Optoelectronics.

[20]  Eicke R. Weber,et al.  The advanced unified defect model for Schottky barrier formation , 1988 .

[21]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[22]  J. Woodall,et al.  Processing and reconstruction effects on Al-GaAs(100) barrier heights , 1993 .

[23]  W. Mönch,et al.  Formation of aluminum nitride films on GaAs(110) at room temperature by reactive molecular‐beam epitaxy: X‐ray and soft x‐ray photoemission spectroscopy , 1990 .

[24]  H. Hasegawa,et al.  On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states , 1983 .

[25]  S. Mitsui,et al.  Growth temperature dependence in molecular beam epitaxy of gallium arsenide , 1978 .

[26]  Nevill Mott,et al.  The theory of impurity conduction , 1961 .

[27]  E. Parker,et al.  On the practical applications of MBE surface phase diagrams , 1987 .

[28]  Evans,et al.  Electron-paramagnetic-resonance study of GaAs grown by low-temperature molecular-beam epitaxy. , 1992, Physical review. B, Condensed matter.

[29]  E. Haller,et al.  Annealing studies of low‐temperature‐grown GaAs:Be , 1992 .

[30]  B L H Wilson,et al.  Gallium Arsenide and Related Compounds , 1973 .

[31]  Michael R. Melloch,et al.  Arsenic precipitates and the semi‐insulating properties of GaAs buffer layers grown by low‐temperature molecular beam epitaxy , 1990 .

[32]  Chris Kocot,et al.  The role of As in molecular-beam epitaxy GaAs layers grown at low temperature , 1991 .

[33]  Z. C. Huang,et al.  Deep level studies in MBE GaAs grown at low temperature , 1991 .

[34]  T. Sigmon,et al.  Deep level transient spectroscopy study of GaAs surface states treated with inorganic sulfides , 1988 .

[35]  R. P. Frankenthal Passivation of Metals and Semiconductors , 1992 .

[36]  D. C. Walters,et al.  Native donors and acceptors in molecular‐beam epitaxial GaAs grown at 200 °C , 1992 .

[37]  Control of GaAs Schottky barrier height by formation of a thin off‐stoichiometric GaAs interlayer grown by low‐temperature molecular beam epitaxy , 1992 .