Drop Impact on a Solid Surface

A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

[1]  A. Biance,et al.  Bridging local to global dynamics of drop impact onto solid substrates , 2014, Journal of Fluid Mechanics.

[2]  Pascal Ray,et al.  Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method , 2011 .

[3]  D. Lohse,et al.  Maximal air bubble entrainment at liquid-drop impact. , 2012, Physical review letters.

[4]  Doris Vollmer,et al.  Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating , 2012, Science.

[5]  Splashing onset in dense suspension droplets. , 2013, Physical review letters.

[6]  S. Zaleski,et al.  Impact of a viscous liquid drop. , 2009, Physical review letters.

[7]  C. Megaridis,et al.  Morphing and vectoring impacting droplets by means of wettability-engineered surfaces , 2014, Scientific Reports.

[8]  D. Kwok,et al.  On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  L. Ramos,et al.  Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field , 2014, Journal of Fluid Mechanics.

[10]  A. Yarin,et al.  Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity , 1995, Journal of Fluid Mechanics.

[11]  J. Mostaghimi,et al.  Effect of Substrate Concave Pattern on Splat Formation of Yttria-Stabilized Zirconia in Atmospheric Plasma Spraying , 2009 .

[12]  M. Tiwari,et al.  Unraveling wetting transition through surface textures with X-rays: Liquid meniscus penetration phenomena , 2014, Scientific Reports.

[13]  S. Nagel,et al.  Ultrafast interference imaging of air in splashing dynamics. , 2011, Physical review letters.

[14]  Y. Ventikos,et al.  Computational study of high-speed liquid droplet impact , 2002 .

[15]  Randy L. Vander Wal,et al.  The splash/non-splash boundary upon a dry surface and thin fluid film , 2006 .

[16]  J. Gordillo,et al.  The diameters and velocities of the droplets ejected after splashing , 2015, Journal of Fluid Mechanics.

[17]  D. Quéré,et al.  Bouncing water drops , 2000 .

[18]  Stéphane Zaleski,et al.  Droplet impact on a dry surface: triggering the splash with a small obstacle , 2005, Journal of Fluid Mechanics.

[19]  Howard A. Stone,et al.  Inclined to splash: triggering and inhibiting a splash with tangential velocity , 2009 .

[20]  Sanjeev Chandra,et al.  Boiling during high-velocity impact of water droplets on a hot stainless steel surface , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Michael P. Brenner,et al.  The mechanism of a splash on a dry solid surface , 2011, Journal of Fluid Mechanics.

[22]  B. Pourdeyhimi,et al.  Impact of aqueous suspension drops onto non-wettable porous membranes: Hydrodynamic focusing and penetration of nanoparticles , 2015 .

[23]  D. Lohse,et al.  Microscopic structure influencing macroscopic splash at high Weber number , 2011 .

[24]  Sang Joon Lee,et al.  Wetting state and maximum spreading factor of microdroplets impacting on superhydrophobic textured surfaces with anisotropic arrays of pillars , 2013 .

[25]  Cameron Tropea,et al.  Investigations on the impact of a drop onto a small spherical target , 2007 .

[26]  D. Ende,et al.  Air cushioning in droplet impact. II. Experimental characterization of the air film evolution , 2015 .

[27]  S. Zaleski,et al.  Drop dynamics after impact on a solid wall: Theory and simulations , 2010 .

[28]  D. Lohse,et al.  Drop impact on superheated surfaces. , 2011, Physical review letters.

[29]  Gourdon,et al.  Film Drainage between Colliding Drops at Constant Approach Velocity: Experiments and Modeling. , 2000, Journal of colloid and interface science.

[30]  D. Lohse,et al.  How microstructures affect air film dynamics prior to drop impact. , 2014, Soft matter.

[31]  I. Hutchings,et al.  Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface , 2009 .

[32]  Marco Marengo,et al.  Time evolution of liquid drop impact onto solid, dry surfaces , 2002 .

[33]  Frieder Mugele,et al.  Dynamics of collapse of air films in drop impact. , 2012, Physical review letters.

[34]  M. Pasandideh-Fard,et al.  Capillary effects during droplet impact on a solid surface , 1996 .

[35]  S. Rubinstein,et al.  Drops can bounce from perfectly hydrophilic surfaces , 2014 .

[36]  D. B. Dam,et al.  Experimental study of the impact of an ink-jet printed droplet on a solid substrate , 2004 .

[37]  S. Chung,et al.  An experiment on the breakup of impinging droplets on a hot surface , 1996 .

[38]  S. Tabakova,et al.  Early post-impact time dynamics of viscous drops onto a solid dry surface , 2009 .

[39]  C. S. Stevens Scaling of the splash threshold for low-viscosity fluids , 2014, 1403.3145.

[40]  D. Bonn,et al.  Singular jets and bubbles in drop impact. , 2006, Physical review letters.

[41]  Xavier Boutillon,et al.  The force of impacting rain. , 2014, Soft matter.

[42]  S. Chandra,et al.  Parameters controlling solidification of molten wax droplets falling on a solid surface , 1999 .

[43]  Ilker S. Bayer,et al.  Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics , 2006, Journal of Fluid Mechanics.

[44]  R. F. Allen,et al.  The role of surface tension in splashing , 1975 .

[45]  D. Quéré,et al.  Bouncing transitions on microtextured materials , 2006 .

[46]  Kripa K. Varanasi,et al.  Reducing the contact time of a bouncing drop , 2013, Nature.

[47]  C. Stow,et al.  An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  I. Roisman Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film , 2009 .

[49]  O. P. Solonenko,et al.  Hollow droplets impacting onto a solid surface , 2012 .

[50]  A. Buguin,et al.  Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces , 2005, cond-mat/0510773.

[51]  P. Hicks,et al.  Air trapping at impact of a rigid sphere onto a liquid , 2012, Journal of Fluid Mechanics.

[52]  Sébastien Neukirch,et al.  Instant fabrication and selection of folded structures using drop impact , 2011, Proceedings of the National Academy of Sciences.

[53]  Kohsei Takehara,et al.  von Kármán vortex street within an impacting drop. , 2012, Physical review letters.

[54]  Sam S. Yoon,et al.  Experimental investigation on splashing and nonlinear fingerlike instability of large water drops , 2007 .

[55]  S. Nagel,et al.  Thin film formation during splashing of viscous liquids. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  A. Soucemarianadin,et al.  Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces , 2009 .

[57]  John E. Field,et al.  The Impact of Compressible Liquids , 1983 .

[58]  A. Ratner,et al.  Effect of chamber pressure on spreading and splashing of liquid drops upon impact on a dry smooth stationary surface , 2011 .

[59]  E. Villermaux,et al.  Drop fragmentation on impact , 2011, Journal of Fluid Mechanics.

[60]  Skating on a film of air: drops impacting on a surface. , 2011, Physical review letters.

[61]  Sanjeev Chandra,et al.  Impact, recoil and splashing of molten metal droplets , 2000 .

[62]  Gilou Agbaglah,et al.  Longitudinal instability of a liquid rim , 2013 .

[63]  Gareth H McKinley,et al.  Robust omniphobic surfaces , 2008, Proceedings of the National Academy of Sciences.

[64]  R. Rioboo,et al.  Experimental evidence of liquid drop break-up in complete wetting experiments , 2006 .

[65]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.

[66]  Young Soo Joung,et al.  Aerosol generation by raindrop impact on soil , 2015, Nature Communications.

[67]  R. Radespiel,et al.  High velocity impingement of single droplets on a dry smooth surface , 2013 .

[68]  F. Smith,et al.  Air cushioning with a lubrication/inviscid balance , 2003, Journal of Fluid Mechanics.

[69]  A. Rozhkov,et al.  Impact of drops of surfactant solutions on small targets , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  S. Thoroddsen,et al.  Bubble entrapment during sphere impact onto quiescent liquid surfaces , 2011, Journal of Fluid Mechanics.

[71]  C. Tropea,et al.  Outcomes from a drop impact on solid surfaces , 2001 .

[72]  S. Zaleski,et al.  Pyramidal and toroidal water drops after impact on a solid surface , 2003, Journal of Fluid Mechanics.

[73]  C. Tropea,et al.  Droplet-wall collisions: Experimental studies of the deformation and breakup process , 1995 .

[74]  Ilker S. Bayer,et al.  Drop impact and rebound dynamics on an inclined superhydrophobic surface. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[75]  A. Maurel,et al.  Spreading dynamics of drop impacts , 2012, Journal of Fluid Mechanics.

[76]  L. Duchemin,et al.  Rarefied gas correction for the bubble entrapment singularity in drop impacts , 2012, 1208.0159.

[77]  Tiezheng Qian,et al.  Pancake bouncing on superhydrophobic surfaces , 2014, Nature Physics.

[78]  Lei Xu,et al.  Compressible air entrapment in high-speed drop impacts on solid surfaces , 2012, Journal of Fluid Mechanics.

[79]  C. Tropea,et al.  Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[80]  Arthur Mason Worthington,et al.  XXVIII. On the forms assumed by drops of liquids falling vertically on a horizontal plate , 1877, Proceedings of the Royal Society of London.

[81]  A. Moita,et al.  Drop impacts onto cold and heated rigid surfaces : Morphological comparisons, disintegration limits and secondary atomization , 2007 .

[82]  J. Gordillo,et al.  Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. , 2014, Physical review letters.

[83]  D. Lohse,et al.  Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Kohsei Takehara,et al.  Micro-splashing by drop impacts , 2012, Journal of Fluid Mechanics.

[85]  M. Rein Phenomena of liquid drop impact on solid and liquid surfaces , 1993 .

[86]  C. Avedisian,et al.  On the collision of a droplet with a solid surface , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[87]  Kohsei Takehara,et al.  High-Speed Imaging of Drops and Bubbles , 2008 .

[88]  T. Etoh,et al.  The air bubble entrapped under a drop impacting on a solid surface , 2005, Journal of Fluid Mechanics.

[89]  Marco Marengo,et al.  Drop collisions with simple and complex surfaces , 2011 .

[90]  D. Poulikakos,et al.  Water drops dancing on ice: how sublimation leads to drop rebound. , 2013, Physical review letters.

[91]  Javad Mostaghimi,et al.  Formation of fingers around the edges of a drop hitting a metal plate with high velocity , 2004, Journal of Fluid Mechanics.

[92]  Chao Sun,et al.  Microdroplet impact at very high velocity , 2012 .

[93]  C. Tropea,et al.  Spray impact: Rim transverse instability initiating fingering and splash, and description of a secondary spray , 2006 .

[94]  Yi-Lin Hung,et al.  A study on the impact velocity and drop size for the occurrence of entrapped air bubbles – Water on parafilm , 2013 .

[95]  Michael P Brenner,et al.  Precursors to splashing of liquid droplets on a solid surface. , 2009, Physical review letters.

[96]  D. Ende,et al.  Wettability-independent bouncing on flat surfaces mediated by thin air films , 2014, Nature Physics.

[97]  Detlef Lohse,et al.  How micropatterns and air pressure affect splashing on surfaces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[98]  F. Lapierre,et al.  To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid , 2009, 0912.0035.

[99]  S. Thoroddsen,et al.  Evolution of the fingering pattern of an impacting drop , 1998 .

[100]  B. Prunet-Foch,et al.  Impacting Emulsion Drop on a Steel Plate: Influence of the Solid Substrate☆ , 1998 .

[101]  C. Tropea,et al.  Inertia dominated drop collisions. I. On the universal flow in the lamella , 2009 .

[102]  D. Bonn,et al.  Maximum Diameter of Impacting Liquid Droplets , 2014 .

[103]  Alexander Korobkin,et al.  Trapping of air in impact between a body and shallow water , 2008, Journal of Fluid Mechanics.

[104]  Fabrice Pardo,et al.  Drops onto gradients of texture , 2009 .

[105]  A. Fedorchenko,et al.  Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface , 2005 .

[106]  On the impact of viscous drops onto dry smooth surfaces , 2012 .

[107]  S. Nagel,et al.  Drop splashing on a dry smooth surface. , 2005, Physical review letters.

[108]  D. Lohse,et al.  Drop impact experiments of non-Newtonian liquids on micro-structured surfaces , 2012, 1706.05732.

[109]  Liquid–solid impacts with compressible gas cushioning , 2013, Journal of Fluid Mechanics.

[110]  S. Nagel,et al.  Splashing of liquids: Interplay of surface roughness with surrounding gas. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  C. Clanet,et al.  On the elasticity of an inertial liquid shock , 2006, Journal of Fluid Mechanics.

[112]  Daniel Attinger,et al.  Fluid dynamics topics in bloodstain pattern analysis: comparative review and research opportunities. , 2013, Forensic science international.

[113]  Sigurdur T. Thoroddsen,et al.  Scaling of the fingering pattern of an impacting drop , 1996 .

[114]  T. Etoh,et al.  Spray and microjets produced by focusing a laser pulse into a hemispherical drop , 2009 .

[115]  A. Yarin Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing ... , 2006 .

[116]  M. Tiwari,et al.  On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. , 2014, Nano letters.

[117]  P. Hicks,et al.  Air cushioning and bubble entrapment in three-dimensional droplet impacts , 2010, Journal of Fluid Mechanics.

[118]  Christophe Clanet,et al.  Drops impacting inclined fibers. , 2009, Journal of colloid and interface science.

[119]  Lei Xu,et al.  Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces , 2015, Proceedings of the National Academy of Sciences.

[120]  Rachel E. Pepper,et al.  Splashing on elastic membranes: The importance of early-time dynamics , 2007 .

[121]  Kamel Fezzaa,et al.  How does an air film evolve into a bubble during drop impact? , 2012, Physical review letters.

[122]  O. Enríquez,et al.  Exploring droplet impact near a millimetre-sized hole: comparing a closed pit with an open-ended pore , 2014, Journal of Fluid Mechanics.

[123]  Hors Equilibre,et al.  Maximal deformation of an impacting drop , 2004 .

[124]  L. Mahadevan,et al.  Lift-off instability during the impact of a drop on a solid surface. , 2014, Physical Review Letters.

[125]  E. Klaseboer,et al.  Universal behavior of the initial stage of drop impact. , 2014, Physical review letters.

[126]  Marco Marengo,et al.  Secondary atomization of water and isooctane drops impinging on tilted heated surfaces , 2007 .

[127]  D. Lohse,et al.  Fingering patterns during droplet impact on heated surfaces. , 2015, Soft matter.

[128]  Bubbles entrapment for drops impinging on polymer surfaces: The roughness effect , 2015 .

[129]  S. Thoroddsen,et al.  Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface , 2015, Journal of Fluid Mechanics.

[130]  F. Feuillebois,et al.  Influence of Surface Roughness on Liquid Drop Impact , 1998 .

[131]  David Quéré,et al.  Drops impacting a sieve. , 2003, Journal of colloid and interface science.

[132]  J. López,et al.  Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces , 2013 .

[133]  L. Duchemin,et al.  Curvature singularity and film-skating during drop impact , 2010, 1008.2918.

[134]  Ho-Young Kim,et al.  Drop impact on microwetting patterned surfaces , 2010 .

[135]  F. Chou,et al.  AN EXPERIMENTAL STUDY OF A WATER DROPLET IMPACTING ON A ROTATING WAFER , 2009 .

[136]  Cameron Tropea,et al.  Drop splashing induced by target roughness and porosity: The size plays no role. , 2015, Advances in colloid and interface science.

[137]  Chao Sun,et al.  Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. , 2015, Soft matter.

[138]  C. Tropea,et al.  Normal impact of a liquid drop on a dry surface: model for spreading and receding , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[139]  Jean-Pierre Delplanque,et al.  The role of air entrainment on the outcome of drop impact on a solid surface , 2008 .

[140]  M. Kim,et al.  Drop splashing on a rough surface: How surface morphology affects splashing threshold , 2014 .

[141]  Sanjeev Chandra,et al.  Deducing drop size and impact velocity from circular bloodstains. , 2005, Journal of forensic sciences.

[142]  C. Kim,et al.  Turning a surface superrepellent even to completely wetting liquids , 2014, Science.

[143]  António L. N. Moreira,et al.  Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? , 2010 .

[144]  Detlef Lohse,et al.  Drop impact upon micro- and nanostructured superhydrophobic surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[145]  M. Brenner,et al.  Events before droplet splashing on a solid surface , 2009, Journal of Fluid Mechanics.

[146]  J. Yeomans,et al.  Pancake bouncing: simulations and theory and experimental verification. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[147]  T. Etoh,et al.  Bubble entrapment through topological change , 2010 .

[148]  D. Bousfield,et al.  Newtonian drop impact with a solid surface , 1995 .

[149]  A. Yarin,et al.  Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation , 1999, Journal of Fluid Mechanics.

[150]  Detlef Lohse,et al.  Universal mechanism for air entrainment during liquid impact , 2015, Journal of Fluid Mechanics.

[151]  S. Nagel,et al.  Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. , 2012, Physical review letters.

[152]  L. Bourouiba,et al.  Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. , 2014, Integrative and comparative biology.

[153]  Ronald J. Adrian,et al.  Leidenfrost Dynamics , 2013 .

[154]  Kensuke Yokoi,et al.  Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle , 2011 .

[155]  D. Bonn,et al.  Retraction dynamics of aqueous drops upon impact on non-wetting surfaces , 2005, Journal of Fluid Mechanics.