Using Singular Displacements for Uncalibrated Monocular Visual Systems

In the present paper, we review and complete the equations and the formalism which allow to achieve a minimal parameterization of the retinal displacement for a monocular visual system without calibration.

[1]  M. Brady,et al.  Rejecting outliers and estimating errors in an orthogonal-regression framework , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[2]  Reg G. Willson Modeling and calibration of automated zoom lenses , 1994, Other Conferences.

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  Andrew Zisserman,et al.  Robust detection of degenerate configurations for the fundamental matrix , 1995, Proceedings of IEEE International Conference on Computer Vision.

[5]  Thierry Viéville,et al.  Dynamic foveal 3D sensing using affine models , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[6]  Michael Brady,et al.  Closing the loop on multiple motions , 1995, Proceedings of IEEE International Conference on Computer Vision.

[7]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[8]  Thierry Viéville,et al.  Auto-calibration of visual sensor parameters on a robotic head , 1994, Image Vis. Comput..

[9]  Quang-Tuan Luong Matrice Fondamentale et Calibration Visuelle sur l''''Environnement - Vers une plus grande autonomie , 1992 .

[10]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[11]  Olivier Faugeras,et al.  Applications of non-metric vision to some visual guided tasks , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[12]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[13]  Reyes Enciso,et al.  Experimenting with 3D vision on a robotic head , 1995, Robotics Auton. Syst..