Spectral Expansions for Asian (Average Price) Options

Arithmetic Asian or average price options deliver payoffs based on the average underlying price over a prespecified time period. Asian options are an important family of derivative contracts with a wide variety of applications in currency, equity, interest rate, commodity, energy, and insurance markets. We derive two analytical formulas for the value of the continuously sampled arithmetic Asian option when the underlying asset price follows geometric Brownian motion. We use an identity in law between the integral of geometric Brownian motion over a finite time interval [0,t] and the state at timet of a one-dimensional diffusion process with affine drift and linear diffusion and express Asian option values in terms of spectral expansions associated with the diffusion infinitesimal generator. The first formula is an infinite series of terms involving Whittaker functionsM andW. The second formula is a single real integral of an expression involving Whittaker functionW plus (for some parameter values) a finite number of additional terms involving incomplete gamma functions and Laguerre polynomials. The two formulas allow accurate computation of continuously sampled arithmetic Asian option prices.

[1]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[2]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[3]  F. Smithies Linear Operators , 2019, Nature.

[4]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[5]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[6]  H. McKean Elementary solutions for certain parabolic partial differential equations , 1956 .

[7]  W. N. Bailey Confluent Hypergeometric Functions , 1960, Nature.

[8]  E. K. Wong The Construction of a Class of Stationary Markoff Processes , 1964 .

[9]  彰 五十嵐 N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .

[10]  H. Buchholz The Confluent Hypergeometric Function , 2021, A Course of Modern Analysis.

[11]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[12]  H. Brand,et al.  Multiplicative stochastic processes in statistical physics , 1979 .

[13]  J. Kent Eigenvalue expansions for diffusion hitting times , 1980 .

[14]  C. Grosche The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential , 1988 .

[15]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[16]  D. Dufresne Weak convergence of random growth processes with applications to insurance , 1989 .

[17]  A. Kemna,et al.  A pricing method for options based on average asset values , 1990 .

[18]  D. Dufresne The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding , 1990 .

[19]  S. Turnbull,et al.  A Quick Algorithm for Pricing European Average Options , 1991, Journal of Financial and Quantitative Analysis.

[20]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[21]  M. Yor On some exponential functionals of Brownian motion , 1992, Advances in Applied Probability.

[22]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[23]  A. Comtet,et al.  On the flux distribution in a one dimensional disordered system , 1994 .

[24]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[25]  A. Comtet,et al.  Diffusion in a one-dimensional random medium and hyperbolic Brownian motion , 1995, cond-mat/9506024.

[26]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[27]  M. Yor,et al.  Exponential functionals of Brownian motion and disordered systems , 1996, Journal of Applied Probability.

[28]  Peter A. Forsyth,et al.  Robust numerical methods for PDE models of Asian options , 1997 .

[29]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[30]  M. Fu,et al.  Pricing Asian Options: A Comparison Of Analytical And Monte Carlo Methods , 1997 .

[31]  Alan L. Lewis Applications of Eigenfunction Expansions in Continuous‐Time Finance , 1998 .

[32]  H. Srivastava,et al.  A Class of Index Transforms with Whittaker's Function as the Kernel , 1998 .

[33]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[34]  N. Ikeda,et al.  Brownian Motion on the Hyperbolic Plane and Selberg Trace Formula , 1999 .

[35]  D. Heath,et al.  Numerical Inversion of Laplace Transforms: A Survey of Techniques with Applications to Derivative Pricing , 1999 .

[36]  D. Dufresne Laguerre Series for Asian and Other Options , 2000 .

[37]  C. J. Harwood Modelling Financial Derivatives with Mathematica , 2000 .

[38]  M. Yor Exponential Functionals of Brownian Motion and Related Processes , 2001 .

[39]  J. Vecer A new PDE approach for pricing arithmetic average Asian options , 2001 .

[40]  M. Yor,et al.  On certain Markov processes attached to exponential functionals of Brownian motion: application to Asian options. , 2001 .

[41]  G. Thompson Fast narrow bounds on the value of Asian options , 2002 .

[42]  M. Schroder On the integral of geometric Brownian motion , 2002, math/0205063.

[43]  Vadim Linetsky,et al.  Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach , 2003, Oper. Res..

[44]  Michael D. Marcozzi On the Valuation of Asian Options by Variational Methods , 2003, SIAM J. Sci. Comput..

[45]  Vadim Linetsky,et al.  Lookback options and diffusion hitting times: A spectral expansion approach , 2004, Finance Stochastics.

[46]  V. Linetsky,et al.  Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates , 2004 .

[47]  J. V. Leeuwen The domino effect , 2004, physics/0401018.

[48]  V. Linetsky THE SPECTRAL DECOMPOSITION OF THE OPTION VALUE , 2004 .