Numerical study of guided-wave sum-frequency generation through second-order nonlinear parametric processes

We describe in detail an approach to the numerical modeling of second-order nonlinear-optical parametric processes in guided-wave structures. For numerical solution of the nonlinear evolutional equations, we choose a finite-element method in conjunction with the Crank–Nicolson method. An extreme enhancement of computational efficiencies is possible by means of a split-step procedure. Through a variety of numerical examples for Cerenkov radiation and quasi phase matching, we demonstrate that the present numerical solution method is highly useful for theoretically predicting optimal device configurations and for designing efficient guided-wave frequency converters.

[1]  M. Minakata,et al.  Precise determination of refractive‐index changes in Ti‐diffused LiNbO3 optical waveguides , 1978 .

[2]  Toshiaki Suhara,et al.  Measurement of reduction in SHG coefficient of LiNbO/sub 3/ by proton exchanging , 1989 .

[3]  Masanori Koshiba,et al.  Modal structure of the Čerenkov second‐harmonic wave in optical fibers , 1990 .

[4]  Lars Thylén,et al.  A propagating beam method analysis of nonlinear effects in optical waveguides , 1984 .

[5]  Shinsuke Umegaki,et al.  Characteristics of optical second-harmonic generation due to Čerenkov-radiation-type phase matching , 1990 .

[6]  Masanori Koshiba,et al.  Modal analysis of the second-harmonic electromagnetic field generated by the Cherenkov effect in optical waveguides , 1990 .

[7]  Masanori Koshiba,et al.  Numerical simulation of guided-wave SHG light sources utilising Cerenkov radiation scheme , 1989 .

[8]  Masanori Koshiba,et al.  Enhancement of the guided‐wave second‐harmonic generation in the form of Cerenkov radiation , 1990 .

[9]  J. M. Connors,et al.  Optimization of the Čerenkov sum-frequency generation in proton-exchanged Mg:LiNbO3 channel waveguides , 1988 .

[10]  Masanori Koshiba,et al.  Spatial polarization instabilities due to transverse effects in nonlinear guided-wave systems , 1990 .

[11]  R. P. Edwin,et al.  Refractive indices of lithium niobate , 1976 .

[12]  Masanori Koshiba,et al.  Finite-element formalism for nonlinear slab-guided waves , 1988 .

[13]  Raimund Ricken,et al.  Integrated optical parametric devices , 1986 .

[14]  F. Laurell,et al.  Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide , 1989, IEEE Photonics Technology Letters.

[15]  Masanori Koshiba,et al.  Split-step finite-element method applied to nonlinear integrated optics , 1990 .

[16]  P. K. Tien,et al.  OPTICAL SECOND HARMONIC GENERATION IN FORM OF COHERENT CERENKOV RADIATION FROM A THIN‐FILM WAVEGUIDE , 1970 .

[17]  Sergey I. Bozhevolnyi,et al.  Measurement of effective index fluctuations in Ti:LiNbO3 waveguides using cherenkov second-harmonic , 1989 .

[18]  A. Loni,et al.  Measurement of the increase in the shg coefficient of proton exchanged LiNbO3 after annealing using a grating diffraction technique , 1990 .

[19]  N. Sanford,et al.  Direct measurement of effective indices of guided modes in LiNbO(3) waveguides using the Cerenkov second harmonic. , 1987, Optics letters.

[20]  M. Fejer,et al.  Quasi‐phase‐matched second‐harmonic generation of blue light in periodically poled LiNbO3 , 1990 .

[21]  W. J. Kozlovsky,et al.  Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide , 1989 .

[22]  Fredrik Laurell,et al.  Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation , 1989 .

[23]  George I. Stegeman,et al.  Waveguides and Fibers for Nonlinear Optics , 1989, Nonlinear Optical Properties of Materials.