The mutational landscape of prostate cancer.

[1]  Jindan Yu,et al.  Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. , 2013, Cancer research.

[2]  M. Rubin,et al.  Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. , 2013, European urology.

[3]  G. Sauter,et al.  CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. , 2013, Cancer research.

[4]  Johan Lindberg,et al.  The mitochondrial and autosomal mutation landscapes of prostate cancer. , 2013, European urology.

[5]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[6]  John T. Wei,et al.  Urinary TMPRSS2:ERG and PCA3 in an Active Surveillance Cohort: Results from a Baseline Analysis in the Canary Prostate Active Surveillance Study , 2013, Clinical Cancer Research.

[7]  U. Stenman,et al.  A high-density tissue microarray from patients with clinically localized prostate cancer reveals ERG and TATI exclusivity in tumor cells , 2013, Prostate Cancer and Prostatic Diseases.

[8]  V. Beneš,et al.  Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. , 2013, Cancer cell.

[9]  J. Lindberg,et al.  Exome sequencing of prostate cancer supports the hypothesis of independent tumour origins. , 2013, European urology.

[10]  G. Sauter,et al.  Marked heterogeneity of ERG expression in large primary prostate cancers , 2013, Modern Pathology.

[11]  M. Loda,et al.  EZH2 Oncogenic Activity in Castration-Resistant Prostate Cancer Cells Is Polycomb-Independent , 2012, Science.

[12]  F. Brimo,et al.  PTEN genomic deletion predicts prostate cancer recurrence and is associated with low AR expression and transcriptional activity , 2012, BMC Cancer.

[13]  R. Eeles,et al.  The role of genetic markers in the management of prostate cancer. , 2012, European urology.

[14]  Tapio Visakorpi,et al.  Androgen receptor (AR) aberrations in castration-resistant prostate cancer , 2012, Molecular and Cellular Endocrinology.

[15]  J. Lindberg,et al.  Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer , 2012, Oncogene.

[16]  C. Plass,et al.  Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. , 2012, The American journal of pathology.

[17]  P. Nelson,et al.  Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. , 2012, Cancer research.

[18]  A. Sivachenko,et al.  Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer , 2012, Nature Genetics.

[19]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2016 .

[20]  R. Lothe,et al.  FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer , 2012, Genes, chromosomes & cancer.

[21]  T. Visakorpi,et al.  Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer , 2012, Oncogene.

[22]  Wei Li,et al.  Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. , 2011, Cancer research.

[23]  S. Clark,et al.  Epigenetics in prostate cancer: biologic and clinical relevance. , 2011, European urology.

[24]  Stephen J. Salipante,et al.  Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers , 2011, Proceedings of the National Academy of Sciences.

[25]  K. Pantel,et al.  The anti‐interleukin‐6 antibody siltuximab down‐regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study , 2011, The Prostate.

[26]  Martha E. Zeeman,et al.  Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. , 2011, Cancer cell.

[27]  K. Knudsen,et al.  Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer , 2011, Nature Reviews Urology.

[28]  S. Dhanasekaran,et al.  Characterization of KRAS rearrangements in metastatic prostate cancer. , 2011, Cancer discovery.

[29]  Wei Yan,et al.  Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. , 2011, Cancer cell.

[30]  Sarat Chandarlapaty,et al.  Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. , 2011, Cancer cell.

[31]  Antonio Alcaraz,et al.  MicroRNA in prostate, bladder, and kidney cancer: a systematic review. , 2011, European urology.

[32]  S. Varambally,et al.  Therapeutic Targeting of SPINK1-Positive Prostate Cancer , 2011, Science Translational Medicine.

[33]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[34]  M. Rubin,et al.  Testing mutual exclusivity of ETS rearranged prostate cancer , 2010, Laboratory Investigation.

[35]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[36]  Martin J. Aryee,et al.  Androgen-induced TOP2B mediated double strand breaks and prostate cancer gene rearrangements , 2010, Nature Genetics.

[37]  Francesca Demichelis,et al.  Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma , 2010, Nature Medicine.

[38]  C. Cooper,et al.  Studies of TMPRSS2-ERG Gene Fusions in Diagnostic Trans-Rectal Prostate Biopsies , 2010, Clinical Cancer Research.

[39]  W. Gerald,et al.  Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer , 2010, British Journal of Cancer.

[40]  L. Kenner,et al.  Down-regulation of suppressor of cytokine signaling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways. , 2009, Cancer research.

[41]  M. Rubin,et al.  ETS gene fusions in prostate cancer: from discovery to daily clinical practice. , 2009, European urology.

[42]  H. Klocker,et al.  Genetic alterations in the PI3K pathway in prostate cancer. , 2009, Anticancer research.

[43]  C. Sander,et al.  Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis , 2009, Nature Genetics.

[44]  Pier Paolo Pandolfi,et al.  Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate , 2009, Nature Genetics.

[45]  D. Dearnaley,et al.  Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. , 2009, Cancer research.

[46]  M. Gerstein,et al.  Distinct genomic aberrations associated with ERG rearranged prostate cancer , 2009, Genes, chromosomes & cancer.

[47]  Dietmar Fuchs,et al.  Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. , 2008, Endocrine-related cancer.

[48]  R. Vessella,et al.  Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. , 2009, Cancer research.

[49]  John T. Wei,et al.  The role of SPINK1 in ETS rearrangement-negative prostate cancers. , 2008, Cancer cell.

[50]  T. Golub,et al.  Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. , 2008, Journal of the National Cancer Institute.

[51]  P. Nelson,et al.  A causal role for ERG in neoplastic transformation of prostate epithelium , 2008, Proceedings of the National Academy of Sciences.

[52]  U. Stenman,et al.  Increased expression of tumor-associated trypsin inhibitor, TATI, in prostate cancer and in androgen-independent 22Rv1 cells. , 2007, European urology.

[53]  J. Brooks,et al.  Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. , 2007, Cancer research.

[54]  S. Dhanasekaran,et al.  Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer , 2007, Nature.

[55]  Y Pawitan,et al.  TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort , 2007, Oncogene.

[56]  T. Tammela,et al.  MicroRNA expression profiling in prostate cancer. , 2007, Cancer research.

[57]  John T. Wei,et al.  Integrative molecular concept modeling of prostate cancer progression , 2007, Nature Genetics.

[58]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[59]  T. Visakorpi,et al.  Alterations of androgen receptor in prostate cancer , 2004, The Journal of Steroid Biochemistry and Molecular Biology.

[60]  R. Tibshirani,et al.  Gene expression profiling identifies clinically relevant subtypes of prostate cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P. Pandolfi,et al.  Pten Dose Dictates Cancer Progression in the Prostate , 2003, PLoS biology.

[62]  E. Bissonette,et al.  Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. , 2003, Cancer research.

[63]  S. Dhanasekaran,et al.  The polycomb group protein EZH2 is involved in progression of prostate cancer , 2002, Nature.

[64]  M. Loda,et al.  Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. , 1999, Cancer research.

[65]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[66]  J. Herman,et al.  Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers , 1998, Oncogene.

[67]  J. Herman,et al.  Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. , 1997, Cancer research.

[68]  J Isola,et al.  Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. , 1997, Cancer research.

[69]  Jorma Isola,et al.  In vivo amplification of the androgen receptor gene and progression of human prostate cancer , 1995, Nature Genetics.