An Asymptotic Expansion and Recursive Inequalities for the Monomer-Dimer Problem

Let λd(p) be the p monomer-dimer entropy on the d-dimensional integer lattice ℤd, where p∈[0,1] is the dimer density. We give upper and lower bounds for λd(p) in terms of expressions involving λd−1(q). The upper bound is based on a conjecture claiming that the p monomer-dimer entropy of an infinite subset of ℤd is bounded above by λd(p). We compute the first three terms in the formal asymptotic expansion of λd(p) in powers of $\frac{1}{d}$. We prove that the lower asymptotic matching conjecture is satisfied for λd(p). Converted to a power series in p, our “formal” expansion shows remarkable validity in low dimensions, d=1,2,3, in which dimensions we give some numerical studies.

[1]  G. P. Erorychev Proof of the van der Waerden conjecture for permanents , 1981 .

[2]  R. Baxter,et al.  Dimers on a Rectangular Lattice , 1968 .

[3]  P. Federbush Dimer lambda_d Expansion Computer Computations , 2008, 0804.4220.

[4]  Mihai Ciucu,et al.  An improved upper bound for the $3$-dimensional dimer problem , 1998 .

[5]  J. Neyman,et al.  Research Papers in Statistics. Festschrift for J. Neyman F.N. David editor, assisted by E. Fix. London, New York, Sydney, J. Wiley & Sons, 1966, VIII p. 468 p., 105/–. , 1968, Recherches économiques de Louvain.

[6]  H. Minc An asymptotic solution of the multidimensional dimer problem , 1980 .

[7]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[8]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[9]  Shmuel Friedland,et al.  A lower bound for the permanent of a doubly stochastic matrix , 1979 .

[10]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[11]  P. Federbush Hidden Structure in Tilings, Conjectured Asymptotic Expansion for lambda_d in Multidimensional Dimer Problem , 2007, 0711.1092.

[12]  J. M. Hammersley,et al.  A Lower Bound for the Monomer-Dimer Problem , 1970 .

[13]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[14]  P. H. Lundow,et al.  On the Validations of the Asymptotic Matching Conjectures , 2006, math/0603001.

[15]  S. Friedland,et al.  The Pressure, Densities and First-order Phase Transitions Associated with Multidimensional SOFT , 2009, 0906.5176.

[16]  École d'été de physique théorique,et al.  Phénomènes critiques, systèmes aléatoires, théories de jauge =: Critical phenomena, random systems, gauge theories , 1986 .

[17]  Shmuel Friedland,et al.  Theory of computation of multidimensional entropy with an application to the monomer-dimer problem , 2004, Adv. Appl. Math..

[18]  P. Federbush Computation of terms in the asymptotic expansion of dimer λd for high dimension , 2009, 0908.1725.

[19]  M. Fisher Statistical Mechanics of Dimers on a Plane Lattice , 1961 .

[20]  J. M. Hammersley,et al.  An improved lower bound for the multidimensional dimer problem , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.