Statistical methods in multi‐speaker automatic speech recognition
暂无分享,去创建一个
[1] John E. Shore,et al. Parameter selection for isolated word recognition using vector quantization , 1984, ICASSP.
[2] R. Sokal,et al. Principles of numerical taxonomy , 1965 .
[3] Andrew J. Viterbi,et al. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.
[4] L. R. Rabiner,et al. On the application of vector quantization and hidden Markov models to speaker-independent, isolated word recognition , 1983, The Bell System Technical Journal.
[5] Louis A. Liporace,et al. Maximum likelihood estimation for multivariate observations of Markov sources , 1982, IEEE Trans. Inf. Theory.
[6] S. C. Johnson. Hierarchical clustering schemes , 1967, Psychometrika.
[7] Jr. G. Forney,et al. The viterbi algorithm , 1973 .
[8] Aaron E. Rosenberg,et al. Speaker-independent recognition of isolated words using clustering techniques , 1979 .
[9] F. Guyot,et al. Toward a continuous model of the cortical column: Application to speech recognition , 1989, International Conference on Acoustics, Speech, and Signal Processing,.
[10] Robert M. Gray,et al. An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..
[11] Pascal Divoux. Mimule : un système de reconnaissance de mots isolés multilocuteurs utilisant les techniques de classification , 1988 .
[12] S. Chiba,et al. Dynamic programming algorithm optimization for spoken word recognition , 1978 .
[13] James K. Baker,et al. Stochastic modeling for automatic speech understanding , 1990 .