Quasi-Static Small-Strain Plasticity in the Limit of Vanishing Hardening and Its Numerical Approximation

The quasi-static rate-independent evolution of the Prager-Ziegler-type model of plasticity with hardening is shown to converge to the rate-independent evolution of the Prandtl-Reuss elastic/perfectly plastic model. Based on the concept of energetic solutions we study the convergence of the solutions in the limit for hardening coefficients converging to $0$ by using the abstract method of $\Gamma$-convergence for rate-independent systems. An unconditionally convergent numerical scheme is devised and two- and three-dimensional numerical experiments are presented. A two-sided energy inequality is a posteriori verified to document experimental convergence rates.

[1]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[2]  G. Maugin The Thermomechanics of Plasticity and Fracture , 1992 .

[3]  Alexander Mielke,et al.  Existence results for energetic models for rate-independent systems , 2005 .

[4]  F. Theil,et al.  A mathematical model for rate–independent phase transformations with hysteresis∗ , 2011 .

[5]  From Damage to Delamination in Nonlinearly Elastic Materials at Small Strains , 2012 .

[6]  D. Knees On global spatial regularity in elasto-plasticity with linear hardening , 2008 .

[7]  Jan Valdman,et al.  Solution of One-Time-Step Problems in Elastoplasticity by a Slant Newton Method , 2008, SIAM J. Sci. Comput..

[8]  W. Prager,et al.  A NEW METHOD OF ANALYZING STRESSES AND STRAINS IN WORK - HARDENING PLASTIC SOLIDS , 1956 .

[9]  A. Mielke,et al.  Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity , 2011, 1111.1192.

[10]  Alexander Mielke,et al.  Chapter 6 – Evolution of Rate-Independent Systems , 2005 .

[11]  Krzysztof Che mi ski Perfect plasticity as a zero relaxation limit of plasticity with isotropic hardening , 2001 .

[12]  Krzysztof Chełmiński Coercive approximation of viscoplasticity and plasticity , 2001 .

[13]  Claes Johnson,et al.  A Mixed Finite Element Method for Plasticity Problems with Hardening , 1977 .

[14]  D. Ornstein,et al.  A non-inequality for differential operators in the L1 norm , 1962 .

[15]  Ulisse Stefanelli,et al.  A Variational Principle for Hardening Elastoplasticity , 2007, SIAM J. Math. Anal..

[16]  Giulio Maier,et al.  Static shakedown theorems in piecewise linearized poroplasticity , 1998 .

[17]  Zur Theorie des quasi‐statischen Verhaltens von elastisch‐plastischen Körpern , 1978 .

[18]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[19]  A. Mielke,et al.  Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit , 2008 .

[20]  Alessandro Giacomini,et al.  Quasi-static Evolution for a Model in Strain Gradient Plasticity , 2008, SIAM J. Math. Anal..

[21]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[22]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[23]  Claes Johnson,et al.  On plasticity with hardening , 1978 .

[24]  S. Repin ERRORS OF FINITE ELEMENT METHOD FOR PERFECTLY ELASTO-PLASTIC PROBLEMS , 1996 .

[25]  Dynamical evolution of elasto-perfectly plastic bodies , 1987 .

[26]  B. Reddy,et al.  Some mathematical problems in perfect plasticity , 2004 .

[27]  P. Gruber,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Analytical and Numerical Aspects of Time-dependent Models with Internal Variables , 1996 .

[28]  H. Alber Materials with Memory , 1998 .

[29]  G. D. Maso,et al.  Quasistatic Evolution Problems for Linearly Elastic–Perfectly Plastic Materials , 2004, math/0412212.

[30]  Carsten Carstensen,et al.  Numerical Analysis of Time-Depending PrimalElastoplasticity with Hardening , 2000, SIAM J. Numer. Anal..

[31]  J. Frehse,et al.  On boundary regularity for the stress in problems of linearized elasto-plasticity , 2009 .

[32]  Sergey Repin,et al.  Functional a posteriori error estimates for incremental models in elasto-plasticity , 2009 .

[33]  Tomáš Roubíček,et al.  Modelling of Microstructure and its Evolution in Shape-Memory-Alloy Single-Crystals, in Particular in CuAlNi , 2005 .

[34]  C. R. Johnson,et al.  A Finite Element Method for Problems in Perfect Plasticity Using Discontinuous Trial Functions , 1981 .

[35]  Weimin Han,et al.  Convergence of approximations to the primal problem in plasticity under conditions of minimal regularity , 2000, Numerische Mathematik.

[36]  Carsten Carstensen,et al.  Elastoviscoplastic Finite Element analysis in 100 lines of Matlab , 2002, J. Num. Math..

[37]  Hans-Werner Ziegler A Modification of Prager's Hardening Rule , 1959 .

[38]  A. Demyanov Regularity of stresses in Prandtl-Reuss perfect plasticity , 2009 .

[39]  J. C. Simo,et al.  Numerical analysis and simulation of plasticity , 1998 .

[40]  Ulisse Stefanelli,et al.  Γ-limits and relaxations for rate-independent evolutionary problems , 2008 .

[41]  S. Bartels,et al.  Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion , 2011 .

[42]  D. Knees ON GLOBAL SPATIAL REGULARITY AND CONVERGENCE RATES FOR TIME-DEPENDENT ELASTO-PLASTICITY , 2010 .

[43]  Gilles A. Francfort,et al.  Existence results for a class of rate-independent material models with nonconvex elastic energies , 2006 .

[44]  Claes Johnson On finite element methods for plasticity problems , 1976 .

[45]  Mathematical Analysis of Constitutive Equations: Existence and Collapse of Solutions , 2003 .

[46]  A. Mielke,et al.  Numerical approaches to rate-independent processes and applications in inelasticity , 2009 .

[47]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[48]  Rodica Toader,et al.  Quasistatic Crack Growth in Elasto-Plastic Materials: The Two-Dimensional Case , 2010 .

[49]  Small‐strain heterogeneous elastoplasticity revisited , 2012 .

[50]  Rolf Rannacher,et al.  A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity , 1999 .

[51]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[52]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .