Technology options for 22nm and beyond

This paper explores the challenges facing the 22nm process generation and beyond. CMOS transistor architectures such as ultra-thin body, FinFET, and nanowire will be compared and contrasted. Mobility enhancements such as channel stress, alternative orientations, and exotic materials will be explored. Resistance challenges will be reviewed in relation to key process techniques such as silicidation, implantation and anneal. Capacitance challenges with traditional and new architectures will be discussed in light of new materials and processing techniques. The impact of new transistor architectures and enhanced channel materials on traditional junction engineering solutions will be summarized.

[1]  J. Liaw,et al.  A 25-nm gate-length FinFET transistor module for 32nm node , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[2]  G. Cohen,et al.  High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[3]  J. Jopling,et al.  High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[4]  Kelin J. Kuhn,et al.  Moore's Law Past 32nm: Future Challenges in Device Scaling , 2009, 2009 13th International Workshop on Computational Electronics.

[5]  L. Chang,et al.  Transistor Scaling to the Limit , 2009 .

[6]  H. Huff Into The Nano Era , 2009 .

[7]  K. Rim Scaling of Strain-induced Mobility Enhancements in Advanced CMOS Technology , 2008, 2008 9th International Conference on Solid-State and Integrated-Circuit Technology.

[8]  O. Faynot,et al.  15nm-diameter 3D stacked nanowires with independent gates operation: ΦFET , 2008, 2008 IEEE International Electron Devices Meeting.

[9]  R. Kotlyar,et al.  High performance Hi-K + metal gate strain enhanced transistors on (110) silicon , 2008, 2008 IEEE International Electron Devices Meeting.

[10]  Mark Y. Liu,et al.  A 32nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array , 2008, 2008 IEEE International Electron Devices Meeting.

[11]  High mobility Ge and III–V materials and novel device structures for high performance nanoscale MOSFETS , 2008, ESSDERC 2008 - 38th European Solid-State Device Research Conference.

[12]  W. Lee,et al.  A novel CVD-SiBCN Low-K spacer technology for high-speed applications , 2008, 2008 Symposium on VLSI Technology.

[13]  C. Auth,et al.  45nm High-k + metal gate strain-enhanced transistors , 2008, 2008 Symposium on VLSI Technology.

[14]  Moon J. Kim,et al.  Effects of Film Stress Modulation Using TiN Metal Gate on Stress Engineering and Its Impact on Device Characteristics in Metal Gate/High- $k$ Dielectric SOI FinFETs , 2008, IEEE Electron Device Letters.

[15]  Ming Zhu,et al.  Spacer Removal Technique for Boosting Strain in n-Channel FinFETs With Silicon-Carbon Source and Drain Stressors , 2008, IEEE Electron Device Letters.

[16]  O. Faynot,et al.  Strained FDSOI CMOS technology scalability down to 2.5nm film thickness and 18nm gate length with a TiN/HfO2 gate stack , 2007, 2007 IEEE International Electron Devices Meeting.

[17]  F. Danneville,et al.  Low Temperature Implementation of Dopant-Segregated Band-edge Metallic S/D junctions in Thin-Body SOI p-MOSFETs , 2007, 2007 IEEE International Electron Devices Meeting.

[18]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.

[19]  M. Fischetti,et al.  Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity , 2007 .

[20]  Shi-Li Zhang,et al.  Schottky-Barrier Height Tuning by Means of Ion Implantation Into Preformed Silicide Films Followed by Drive-In Anneal , 2007, IEEE Electron Device Letters.

[21]  B. Ghyselen,et al.  Optimization of the MuGFET performance on Super Critical-Strained SOI (SC-SSOI) substrates featuring raised source/drain and dual CESL , 2007, 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA).

[22]  A. Hikavyy,et al.  Gatestacks for scalable high-performance FinFETs , 2007, 2007 IEEE International Electron Devices Meeting.

[23]  B. Ryu,et al.  Gate-All-Around (GAA) Twin Silicon Nanowire MOSFET (TSNWFET) with 15 nm Length Gate and 4 nm Radius Nanowires , 2006, 2006 International Electron Devices Meeting.

[24]  O. Faynot,et al.  25nm Short and Narrow Strained FDSOI with TiN/HfO2 Gate Stack , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[25]  G. Dewey,et al.  Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[26]  J. Hwang,et al.  Kinetics of Shallow Junction Activation: Physical Mechanisms , 2006, 2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors.

[27]  A. Toffoli,et al.  Ultra-Thin Fully Depleted SOI Devices with Thin BOX, Ground Plane and Strained Liner Booster , 2006, 2006 IEEE international SOI Conferencee Proceedings.

[28]  S. Suk,et al.  Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate , 2006, 2009 Symposium on VLSI Technology.

[29]  T. Adam,et al.  Fully depleted extremely thin SOI technology fabricated by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain , 2006, 2009 Symposium on VLSI Technology.

[30]  B. Ryu,et al.  High performance 5nm radius Twin Silicon Nanowire MOSFET (TSNWFET) : fabrication on bulk si wafer, characteristics, and reliability , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[31]  Anna W. Topol,et al.  High performance FDSOI CMOS technology with metal gate and high-k , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[32]  R. Rooyackers,et al.  25% drive current improvement for p-type multiple gate FET (MuGFET) devices by the introduction of recessed Si/sub 0.8/Ge/sub 0.2/ in the source and drain regions , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[33]  Avik W. Ghosh,et al.  Theoretical investigation of surface roughness scattering in silicon nanowire transistors , 2005, cond-mat/0502538.

[34]  P. Bai,et al.  A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 /spl mu/m/sup 2/ SRAM cell , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[35]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[36]  Min Yang,et al.  CMOS circuit performance enhancement by surface orientation optimization , 2004 .

[37]  R. Kotlyar,et al.  Assessment of room-temperature phonon-limited mobility in gated silicon nanowires , 2004 .

[38]  A. Chou,et al.  High performance CMOS fabricated on hybrid substrate with different crystal orientations , 2003, IEEE International Electron Devices Meeting 2003.

[39]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[40]  S. Hareland,et al.  Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[41]  Y. Yeo,et al.  25 nm CMOS Omega FETs , 2002, Digest. International Electron Devices Meeting,.

[42]  P. Bai,et al.  A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 /spl mu/m/sup 2/ SRAM cell , 2002, Digest. International Electron Devices Meeting,.

[43]  T. Skotnicki,et al.  50 nm-Gate All Around (GAA)-Silicon On Nothing (SON)-devices: a simple way to co-integration of GAA transistors within bulk MOSFET process , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[44]  J. Treichler,et al.  Triple-self-aligned, planar double-gate MOSFETs: devices and circuits , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[45]  E. Nowak,et al.  High-performance symmetric-gate and CMOS-compatible V/sub t/ asymmetric-gate FinFET devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[46]  Jong-Tea Park,et al.  Pi-Gate SOI MOSFET , 2001, IEEE Electron Device Letters.

[47]  D. Monroe,et al.  Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs , 2000, IEEE Electron Device Letters.

[48]  Chenming Hu,et al.  Ultrathin-body SOI MOSFET for deep-sub-tenth micron era , 2000, IEEE Electron Device Letters.

[49]  W. Lai,et al.  The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[50]  Jong-Ho Lee,et al.  Super self-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[51]  Chenming Hu,et al.  Ultra-thin body SOI MOSFET for deep-sub-tenth micron era , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[52]  Chenming Hu,et al.  A folded-channel MOSFET for deep-sub-tenth micron era , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[53]  H.-S.P. Wong,et al.  Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[54]  S. S. Yuen,et al.  Recess channel structure for reducing source/drain series resistance in ultra-thin SOI MOSFETs , 1993, Proceedings of 1993 IEEE International SOI Conference.

[55]  D. Hisamoto,et al.  Impact of the vertical SOI 'DELTA' structure on planar device technology , 1991 .

[56]  Fumio Horiguchi,et al.  Impact of surrounding gate transistor (SGT) for ultra-high-density LSI's , 1991 .

[57]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[58]  D. Hisamoto,et al.  A fully depleted lean-channel transistor (DELTA)-a novel vertical ultrathin SOI MOSFET , 1990, IEEE Electron Device Letters.

[59]  D. Hisamoto,et al.  A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET , 1989, International Technical Digest on Electron Devices Meeting.

[60]  J. Colinge Reduction of kink effect in thin-film SOI MOSFETs , 1988, IEEE Electron Device Letters.

[61]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[62]  G. Olson Cw beam processing of silicon and other semiconductors: James F. Gibbons (ed.) in semiconductors and semimetals, vol. 17, R.K. Willardson and A.C. Beer (eds.) (Academic Press, 1984) pp. xi + 453, US $ 55.00. ISBN 0-12-752117-8 (v. 17) , 1986 .

[63]  J. Colinge Subthreshold slope of thin-film SOI MOSFET's , 1986, IEEE Electron Device Letters.

[64]  J. Colinge Transconductance of Silicon-on-insulator (SOI) MOSFET's , 1985, IEEE Electron Device Letters.

[65]  J. Gibbons,et al.  Chapter 3 Applications of CW Beam Processing to Ion Implanted Crystalline Silicon , 1984 .

[66]  Hyung-Kyu Lim,et al.  Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET's , 1983, IEEE Transactions on Electron Devices.

[67]  James W. Mayer,et al.  Laser Annealing of Semiconductors , 1983 .

[68]  R. L. Cohen,et al.  Thermally assisted flash annealing of silicon and germanium , 1978 .

[69]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[70]  J Wales Semiconductors and Semimetals , 1971 .