Monooxomolybdenum(VI) complexes possessing olefinic dithiolene ligands: probing Mo-S covalency contributions to electron transfer in dimethyl sulfoxide reductase family molybdoenzymes.

A monooxomolybdenum(VI) model complex for the oxidized active site in the DMSOR family of molybdoenzymes has been synthesized and structurally characterized. The compound was obtained from the desoxomolybdenum(IV) derivative by clean oxygen-atom transfer from an amine N-oxide in a manner similar to that observed in the enzyme. A combination of electronic absorption and resonance Raman spectroscopies, coupled with the results of bonding and excited-state calculations, has been used to provide strong support for a highly covalent Mo(d(xy))-S(dithiolene) pi*-bonding interaction in the molybdenum(VI) complex. It is proposed that the resulting Mo-S covalency facilitates electron-transfer regeneration of the catalytically competent DMSOR Mo(IV) active site.