InShape: In-Situ Shape-Based Interactive Multiple-View Exploration of Diffusion MRI Visualizations

We present InShape, an in-situ shape-based multiple-view selection interface for interactive exploration of dense tube-based diffusion magnetic resonance imaging (DMRI) visualizations. An optimal experience in such exploration demands concentration on the tract of interest (TOI). InShape facilitates such workflow by leveraging three design principles: (1) shape-enabled precise selection; (2) in-the-flow multi-views for comparison; (3) sculpture-based removal. Results of a pilot study suggested that users have the best interaction experience when the widget shapes match the targeted selection shape. We also found that widget design without losing the flow of operations facilitates focused control. Finally, quick sculpture can help reach the target selection fibers quickly. The contributions of this work are the design principles, together with discussions of usability considerations in interactive exploration in dense 3D DMRI environments.

[1]  Timo Ropinski,et al.  2010 IEEE Visualization Contest Winner: interactive planning for brain tumor resections. , 2011, IEEE computer graphics and applications.

[2]  Charl P. Botha,et al.  Fast and reproducible fiber bundle selection in DTI visualization , 2005 .

[3]  Arie E. Kaufman,et al.  Volume sculpting , 1995, I3D '95.

[4]  D. Laidlaw,et al.  Interactive Multiple Scale Small Multiples , 2007 .

[5]  Brian A. Wandell,et al.  Exploring connectivity of the brain's white matter with dynamic queries , 2005, IEEE Transactions on Visualization and Computer Graphics.

[6]  David H. Laidlaw,et al.  Exploring 3D DTI Fiber Tracts with Linked 2D Representations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  David Akers,et al.  CINCH: a cooperatively designed marking interface for 3D pathway selection , 2006, UIST.

[8]  Chris North,et al.  A Taxonomy of Multiple Window Coordinations , 1998 .

[9]  Marie-Paule Cani,et al.  Resolution Adaptive Volume Sculpting , 2001, Graph. Model..

[10]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[11]  Jonathan C. Roberts,et al.  On encouraging multiple views for visualization , 1998, Proceedings. 1998 IEEE Conference on Information Visualization. An International Conference on Computer Visualization and Graphics (Cat. No.98TB100246).

[12]  William Ribarsky,et al.  Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[13]  Wieslaw Lucjan Nowinski,et al.  Three-Dimensional Interactive and Stereotactic Human Brain Atlas of White Matter Tracts , 2011, Neuroinformatics.

[14]  David F. Tate,et al.  A Novel Interface for Interactive Exploration of DTI Fibers , 2009, IEEE Transactions on Visualization and Computer Graphics.

[15]  J. Andreas Bærentzen,et al.  Octree–based Volume Sculpting , 1998 .

[16]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[17]  Cláudio T. Silva,et al.  VisTrails: enabling interactive multiple-view visualizations , 2005, VIS 05. IEEE Visualization, 2005..

[18]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[19]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[20]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..