Constrained state-space system identification with application to structural dynamics

Constrained identification of state-space models representing structural dynamic systems is addressed. Based on physical insight, transfer function constraints are formulated in terms of the state-space parametrization. A simple example shows that a method tailored for this application, which utilizes the non-uniqueness of a state-space model, outperforms the classic sequential quadratic programming method in terms of robustness and convergence properties. The method is also successfully applied to real experimental data of a plane frame structure.

[1]  D. Bernstein,et al.  Subspace identification with guaranteed stability using constrained optimization , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[2]  Tomas McKelvey,et al.  An analysis of the parametrization by data driven local coordinates for multivariable linear systems , 2004, Autom..

[3]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[4]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[5]  Thomas Kailath,et al.  Linear Systems , 1980 .

[6]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[7]  S. O. Reza Moheimani,et al.  Estimation of phase constrained MIMO transfer functions with application to flexible structures with , 2005 .

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Jan M. Maciejowski,et al.  Realization of stable models with subspace methods , 1996, Autom..

[11]  Anders Helmersson,et al.  Data driven local coordinates for multivariable linear systems and their application to system identification , 2004, Autom..

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Johan A. K. Suykens,et al.  Identification of stable models in subspace identification by using regularization , 2001, IEEE Trans. Autom. Control..

[14]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .