Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (−0.17 s.d., P = 4.6 × 10−4). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.

Thomas Meitinger | Pierre Fontanillas | Stefan Johansson | Kari Stefansson | Lars Lind | Andrew P Morris | Christian Fuchsberger | Anubha Mahajan | Mark I McCarthy | Tanya M. Teslovich | John Blangero | Yossi Farjoun | Jason Flannick | Yik Ying Teo | Torben Hansen | Ayellet V. Segrè | Michael Boehnke | Niels Grarup | Jasmina Kravic | Valgerdur Steinthorsdottir | Ivan Brandslund | Bo Isomaa | Allan Linneberg | Gudmar Thorleifsson | Sekar Kathiresan | Erik Ingelsson | Rainer Rauramaa | Tiinamaija Tuomi | Leif Groop | David Altshuler | Pål R Njølstad | Veikko Salomaa | Yoon Shin Cho | Gil Atzmon | Ravindranath Duggirala | Craig Hanis | Jaspal Kooner | Gisli Masson | Benjamin Glaser | Shobha Potluri | Jaakko Tuomilehto | Kristian Hveem | Oluf Pedersen | John Chambers | Unnur Thorsteinsdottir | Stacey Gabriel | Karen L Mohlke | M. McCarthy | A. Morris | T. Fennell | S. Gabriel | D. Gudbjartsson | U. Thorsteinsdóttir | A. Kong | K. Stefánsson | D. Cox | D. Altshuler | V. Salomaa | T. Hansen | O. Pedersen | N. Grarup | T. Jørgensen | I. Brandslund | C. Lindgren | L. Groop | M. Laakso | M. Boehnke | Y. Teo | R. Duggirala | J. Blangero | E. Tai | P. Sulem | G. Másson | G. Thorleifsson | V. Steinthorsdottir | T. Meitinger | J. Flannick | E. Ingelsson | K. Mohlke | H. Stringham | J. Tuomilehto | B. Voight | N. Burtt | S. Kathiresan | B. Isomaa | T. Tuomi | L. Lind | R. Rauramaa | A. Mahajan | B. Glaser | Y. S. Cho | Jong-Young Lee | R. Benediktsson | James G. Wilson | A. Molven | P. Njølstad | J. Kooner | S. Potluri | D. Bowden | J. Chambers | P. Fontanillas | T. Forsén | Á. Hreidarsson | Jasmina Kravic | K. Hveem | C. Fuchsberger | A. Linneberg | C. Christensen | S. Johansson | M. Jørgensen | Y. Farjoun | J. Trimmer | T. Rolph | N. Beer | G. Atzmon | C. Hanis | S. B. Jacobs | R. Ribel‐Madsen | F. Burslem | Patrick Sulem | Torben Jørgensen | Augustine Kong | Jong-Young Lee | Benjamin F Voight | Cecilia M Lindgren | Markku Laakso | Daniel F Gudbjartsson | Noël P Burtt | E Shyong Tai | Tom Forsén | James G Wilson | Ayellet V Segrè | Heather M Stringham | Anders Molven | David R Cox | Rafn Benediktsson | A. Richard | F. Vaziri-Sani | Julia Brosnan | Desirée A. Douglas | Zachary Dymek | H. Skärstrand | Marit Eika Jørgensen | Timothy Fennell | Frank Burslem | Nicola L Beer | Astradur B Hreidarsson | Jeff K Trimmer | Tim Rolph | Suzanne B R Jacobs | Don W Bowden | Julia Brosnan | Cramer Christensen | Desirée A Douglas | Zachary Dymek | Rasmus Ribel-Madsen | Ann-Marie Richard | Hanna Skärstrand | Tanya Teslovich | Fariba Vaziri-Sani | A. Segrè | Y. Cho | J. Kravic | A. Morris | M. McCarthy | S. Jacobs | T. Hansen | M. McCarthy | P. Fontanillas | A. Morris

[1]  Kari Stefansson,et al.  A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer , 2012, Nature Genetics.

[2]  Alexander Pertsemlidis,et al.  Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.

[3]  Alkes L. Price,et al.  New approaches to population stratification in genome-wide association studies , 2010, Nature Reviews Genetics.

[4]  T. Hudson,et al.  A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.

[5]  R. O’Brien,et al.  The Physiological Effects of Deleting the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Are Influenced by Gender and Genetic Background , 2012, PloS one.

[6]  D. Altshuler,et al.  Validating therapeutic targets through human genetics , 2013, Nature Reviews Drug Discovery.

[7]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[8]  M. Kanai,et al.  Rare Variants of IFIH 1 , a Gene Implicated in Antiviral Responses , Protect Against Type 1 Diabetes , 2009 .

[9]  P. Waters Degradation of mutant proteins, underlying "loss of function" phenotypes, plays a major role in genetic disease. , 2001, Current issues in molecular biology.

[10]  G. Rutter,et al.  Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion , 2010, Diabetologia.

[11]  T. Abe,et al.  The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. , 2013, The Journal of clinical investigation.

[12]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[13]  M. Granvik,et al.  Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice , 2009, Proceedings of the National Academy of Sciences.

[14]  A. Gloyn,et al.  From Genetic Association to Molecular Mechanism , 2010, Current diabetes reports.

[15]  M. Wheeler,et al.  Effects of high-fat diet feeding on Znt 8-null mice : differences between-cell and global knockout of Znt 8 , 2012 .

[16]  G. Rutter Think zinc: New roles for zinc in the control of insulin secretion , 2010, Islets.

[17]  V. Gebski,et al.  Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. , 2012, JAMA.

[18]  A. Favier,et al.  Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. , 2004, Diabetes.

[19]  G. Rutter,et al.  Animal Models of GWAS-Identified Type 2 Diabetes Genes , 2013, Journal of diabetes research.

[20]  G. McVean,et al.  Differential confounding of rare and common variants in spatially structured populations , 2011, Nature Genetics.

[21]  M. Pagano,et al.  Experimental tests to definitively determine ubiquitylation of a substrate. , 2005, Methods in enzymology.

[22]  G. Forlani,et al.  Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Todd,et al.  Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes , 2009, Science.

[24]  M. Wheeler,et al.  Effects of high-fat diet feeding on Znt8-null mice: differences between β-cell and global knockout of Znt8. , 2012, American journal of physiology. Endocrinology and metabolism.

[25]  E. Oetjen,et al.  Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes , 2011, Diabetes.

[26]  Richard K P Benninger,et al.  Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. , 2009, The Biochemical journal.

[27]  D. Altshuler,et al.  Power in the phenotypic extremes: a simulation study of power in discovery and replication of rare variants , 2011, Genetic epidemiology.

[28]  Alex Doney,et al.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.

[29]  M. Loder,et al.  Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants , 2009, Diabetes.

[30]  A. Favier,et al.  In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion , 2006, Journal of Cell Science.