Numerical simulations of immiscible fluid clusters

We present a phase field model for multi-component surface diffusion, which can be used to describe the evolution of clusters of immiscible fluids such as soap bubble clusters. The model is given by a Cahn-Hilliard system with a nonsmooth obstacle free energy and a degenerate mobility matrix. On stating the considered finite element approximation, we describe the iterative solver used to solve the nonlinear discrete system at each time step and present several numerical experiments for N=3,4,5 and 6 components in two and three space dimensions, including simulations with topological changes.

[1]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[2]  Gary Lawlor,et al.  PAIRED CALIBRATIONS APPLIED TO SOAP FILMS, IMMISCIBLE FLUIDS, AND SURFACES OR NETWORKS MINIMIZING OTHER NORMS , 1994 .

[3]  J. Zimba,et al.  The standard double soap bubble in R2 uniquely minimizes perimeter , 1993 .

[4]  Wacharin Wichiramala,et al.  Proof of the planar triple bubble conjecture , 2004 .

[5]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[6]  Three-dimensional bubble clusters: shape, packing, and growth rate. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  B. Cipra Why Double Bubbles Form the Way They Do , 2000, Science.

[8]  C. Isenberg,et al.  The Science of Soap Films and Soap Bubbles , 1978 .

[9]  Junseok Kim,et al.  A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system , 2008 .

[10]  D. de Fontaine,et al.  An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria , 1972 .

[11]  S. Cox,et al.  Calculations of the minimal perimeter for N deformable cells of equal area confined in a circle , 2006 .

[12]  Frank Morgan,et al.  Soap bubbles in ${\bf R}^2$ and in surfaces. , 1994 .

[13]  B. White Existence of least-energy configurations of immiscible fluids , 1996 .

[14]  HARALD GARCKE,et al.  On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations , 2007, SIAM J. Sci. Comput..

[15]  HARALD GARCKE,et al.  Linearized Stability Analysis of Stationary Solutions for Surface Diffusion with Boundary Conditions , 2005, SIAM J. Math. Anal..

[16]  Frank Morgan,et al.  SOAP BUBBLES IN R 2 AND IN SURFACES , 1994 .

[17]  F. Fischer Four-bubble clusters and Menelaus’ theorem , 2002 .

[18]  Robert Nürnberg,et al.  Finite Element Approximation of a Three Dimensional Phase Field Model for Void Electromigration , 2008, J. Sci. Comput..

[19]  J. Taylor,et al.  Some mathematical challenges in materials science , 2002 .

[20]  Harald Garcke,et al.  On anisotropic order parameter models for multi-phase system and their sharp interface limits , 1998 .

[21]  Stefan Hildebrandt,et al.  Mathematics and optimal form , 1985 .

[22]  S. Osher,et al.  Capturing the Behavior of Bubbles and Drops Using the Variational Level Set Approach , 1998 .

[23]  F. Morgan Immiscible fluid clusters in R2 and R3. , 1998 .

[24]  L. Bronsard,et al.  On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 1993 .

[25]  Harald Garcke,et al.  A phase field model for the electromigration of intergranular voids , 2007 .

[26]  J. Hass,et al.  The double bubble conjecture , 1995 .

[27]  John M. Sullivan,et al.  OPEN PROBLEMS IN SOAP BUBBLE GEOMETRY , 1996 .

[28]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[29]  Harald Garcke,et al.  On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems , 2001 .

[30]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[31]  Fred Almgren,et al.  Soap Bubble Clusters , 1997 .

[32]  Harald Garcke,et al.  A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[33]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[34]  S. Baldo Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids , 1990 .

[35]  D. Reinelt,et al.  Structure of random foam. , 2004, Physical review letters.

[36]  Manuel Ritor'e,et al.  Least-perimeter partitions of the disk into three regions of given areas , 2003 .

[37]  Simon Cox,et al.  Minimal perimeter for N identical bubbles in two dimensions: Calculations and simulations , 2003 .

[38]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[39]  Michael Hutchings,et al.  Proof of the Double Bubble Conjecture , 2002 .

[40]  Harald Garcke,et al.  Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix , 1997 .

[41]  Harald Garcke,et al.  A singular limit for a system of degenerate Cahn-Hilliard equations , 2000, Advances in Differential Equations.

[42]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[43]  Harald Garcke,et al.  A parametric finite element method for fourth order geometric evolution equations , 2007, J. Comput. Phys..

[44]  Harald Garcke,et al.  Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid , 2005, Math. Comput..

[45]  John W. Cahn,et al.  Spinodal decomposition in ternary systems , 1971 .

[46]  J. Taylor,et al.  The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces , 1976 .

[47]  Harald Garcke,et al.  Allen-Cahn systems with volume constraints , 2008 .

[48]  J. Hass,et al.  Double bubbles minimize , 2000, math/0003157.