Spectral properties and conservation laws in Mimetic Finite Difference methods for PDEs

The Mimetic Finite Difference (MFD) methods for PDEs mimic crucial properties of mathematical systems: duality and self-adjointness of differential operators, conservation laws and properties of the solution on general polytopal meshes. In this article the structure and the spectral properties of the linear systems derived by the spatial discretization of diffusion problem are analysed. In addition, the numerical approximation of parabolic equations is discussed where the MFD approach is used in the space discretization while implicit ? -method and explicit Runge-Kutta-Chebyshev schemes are used in time discretization. Moreover, we will show how the numerical solution preserves certain conservation laws of the theoretical solution.

[1]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[2]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[3]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[4]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[5]  Willem Hundsdorfer,et al.  RKC time-stepping for advection-diffusion-reaction problems , 2004 .

[6]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[7]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[8]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[9]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[10]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[11]  L. B. D. Veiga,et al.  A Mimetic discretization method for linear elasticity , 2010 .

[12]  Toshiyuki Koto,et al.  IMEX Runge-Kutta schemes for reaction-diffusion equations , 2008 .

[13]  J. E. Castillo,et al.  A Matrix Analysis Approach to Higher-Order Approximations for Divergence and Gradients Satisfying a Global Conservation Law , 2003, SIAM J. Matrix Anal. Appl..

[14]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[15]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[16]  José E. Castillo,et al.  Linear Systems Arising for Second-Order Mimetic Divergence and Gradient Discretizations , 2005, J. Math. Model. Algorithms.

[17]  Christophe J. Zbinden,et al.  Partitioned Runge-Kutta-Chebyshev Methods for Diffusion-Advection-Reaction Problems , 2011, SIAM J. Sci. Comput..

[18]  Annalisa Buffa,et al.  Innovative mimetic discretizations for electromagnetic problems , 2010, J. Comput. Appl. Math..

[19]  Luciano Lopez A Method for the Numerical Solution of a Class of Nonlinear Diffusion Equations , 1991 .

[20]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[21]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[22]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[23]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[24]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[25]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[26]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..