Software project effort estimation with voting rules

Social choice deals with aggregating the preferences of a number of voters into a collective preference. We will use this idea for software project effort estimation, substituting the voters by project attributes. Therefore, instead of supplying numeric values for various project attributes that are then used in regression or similar methods, a new project only needs to be placed into one ranking per attribute, necessitating only ordinal values. Using the resulting aggregate ranking the new project is again placed between other projects whose actual expended effort can be used to derive an estimation. In this paper we will present this method and extensions using weightings derived from genetic algorithms. We detail a validation based on several well-known data sets and show that estimation accuracy similar to classic methods can be achieved with considerably lower demands on input data.

[1]  Stefan Koch,et al.  ERP selection process in midsize and large organizations , 2001, Bus. Process. Manag. J..

[2]  Stephen G. MacDonell,et al.  Alternatives to regression models for estimating software projects , 1996 .

[3]  Magne Jørgensen,et al.  A Systematic Review of Software Development Cost Estimation Studies , 2007, IEEE Transactions on Software Engineering.

[4]  John E. Gaffney,et al.  Software Function, Source Lines of Code, and Development Effort Prediction: A Software Science Validation , 1983, IEEE Transactions on Software Engineering.

[5]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[6]  Christian Klamler On the Closeness Aspect of Three Voting Rules: Borda – Copeland – Maximin , 2005 .

[7]  Adam A. Porter,et al.  Learning from Examples: Generation and Evaluation of Decision Trees for Software Resource Analysis , 1988, IEEE Trans. Software Eng..

[8]  Christian Klamler,et al.  A distance-based comparison of basic voting rules , 2006, Central Eur. J. Oper. Res..

[9]  D. Ross Jeffery,et al.  Using Web objects for estimating software development effort for Web applications , 2003, Proceedings. 5th International Workshop on Enterprise Networking and Computing in Healthcare Industry (IEEE Cat. No.03EX717).

[10]  P. Fishburn Condorcet Social Choice Functions , 1977 .

[11]  Witold Abramowicz,et al.  Technologies for Business Information Systems , 2007 .

[12]  Stefan Koch,et al.  ERP Implementation Effort Estimation Using Data Envelopment Analysis , 2006, BIS.

[13]  Bojan Srdjevic,et al.  Linking analytic hierarchy process and social choice methods to support group decision-making in water management , 2007, Decis. Support Syst..

[14]  Eduardo Miranda Improving Subjective Estimates Using Paired Comparisons , 2001, IEEE Softw..

[15]  Colin J Burgess,et al.  Can genetic programming improve software effort estimation? A comparative evaluation , 2001, Inf. Softw. Technol..

[16]  María N. Moreno García,et al.  Building knowledge discovery-driven models for decision support in project management , 2004, Decis. Support Syst..

[17]  Martin J. Shepperd,et al.  Estimating Software Project Effort Using Analogies , 1997, IEEE Trans. Software Eng..

[18]  Ellis Horowitz,et al.  Software Cost Estimation with COCOMO II , 2000 .

[19]  Lawrence H. Putnam,et al.  A General Empirical Solution to the Macro Software Sizing and Estimating Problem , 1978, IEEE Transactions on Software Engineering.

[20]  D. Ross Jeffery,et al.  Cost estimation for web applications , 2003, 25th International Conference on Software Engineering, 2003. Proceedings..

[21]  Barry W. Boehm,et al.  Software development cost estimation approaches — A survey , 2000, Ann. Softw. Eng..

[22]  Emilia Mendes,et al.  Software productivity measurement using multiple size measures , 2004, IEEE Transactions on Software Engineering.

[23]  Genny Tortora,et al.  Class point: an approach for the size estimation of object-oriented systems , 2005, IEEE Transactions on Software Engineering.

[24]  Barry W. Boehm,et al.  Software Engineering Economics , 1993, IEEE Transactions on Software Engineering.

[25]  Magne Jørgensen,et al.  A Systematic Review of Software Development Cost Estimation Studies , 2007 .

[26]  D. Saari Decisions and elections : explaining the unexpected , 2001 .

[27]  Li-Wei Chen,et al.  Integration of the grey relational analysis with genetic algorithm for software effort estimation , 2008, Eur. J. Oper. Res..

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Joseph M. Mellichamp,et al.  Software Development Cost Estimation Using Function Points , 1994, IEEE Trans. Software Eng..

[30]  Douglas Fisher,et al.  Machine Learning Approaches to Estimating Software Development Effort , 1995, IEEE Trans. Software Eng..

[31]  Matthias Jarke,et al.  The Design of Knowledge-Based Systems for Managing Ill-Structured Software Projects , 1989, Decis. Support Syst..

[32]  Barbara A. Kitchenham,et al.  Effort estimation using analogy , 1996, Proceedings of IEEE 18th International Conference on Software Engineering.

[33]  David Ellison,et al.  Software cost estimation using an Albus perceptron (CMAC) , 1997, Inf. Softw. Technol..

[34]  Frank Bomarius,et al.  COBRA: a hybrid method for software cost estimation, benchmarking, and risk assessment , 1998, Proceedings of the 20th International Conference on Software Engineering.

[35]  F. J. Heemstra,et al.  Software cost estimation , 1992, Inf. Softw. Technol..

[36]  Ingunn Myrtveit,et al.  A Controlled Experiment to Assess the Benefits of Estimating with Analogy and Regression Models , 1999, IEEE Trans. Software Eng..

[37]  Didier Dubois,et al.  A decision engine based on rational aggregation of heuristic knowledge , 1994, Decis. Support Syst..