Leaf Extracts of Miconia albicans (Sw.) Triana (Melastomataceae) Prevent the Feeding and Oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)
暂无分享,去创建一个
R. M. Mussury | C. Cardoso | Isabella Maria Pompeu Monteiro Padial | Claudemir Antonio Garcia Fioratti | J. B. Malaquias | J. K. S. Pachú | Silvana Aparecida de Souza | Jéssica K S Pachú
[1] R. M. Mussury,et al. Tradescantia pallida (Commelinaceae) Promotes Reductions in Plutella xylostella (Lepidoptera: Plutellidae) Populations , 2022, Agronomy.
[2] R. M. Mussury,et al. Antifeeding and Oviposition Deterrent Effect of Ludwigia spp. (Onagraceae) against Plutella xylostella (Lepidoptera: Plutellidae) , 2022, Plants.
[3] G. Felton,et al. Sorghum and maize flavonoids are detrimental to growth and survival of fall armyworm Spodoptera frugiperda , 2022, Journal of Pest Science.
[4] K. Kümmerer,et al. Flavonoids as biopesticides - Systematic assessment of sources, structures, activities and environmental fate. , 2022, The Science of the total environment.
[5] Meihong Lin,et al. Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules and Activities: Part Ⅰ (Aphanamixis-Chukrasia) , 2021, International journal of molecular sciences.
[6] R. M. Mussury,et al. Extratos aquosos de Psychotria sp. interferem na biologia de Plutella xylostella , 2021, Research, Society and Development.
[7] Shaoli Wang,et al. Insecticide Resistance Monitoring of the Diamondback Moth (Lepidoptera: Plutellidae) Populations in China , 2021, Journal of Economic Entomology.
[8] Franciele Q. Ames,et al. Chemical profile, antioxidant and anti-inflammatory properties of Miconia albicans (Sw.) Triana (Melastomataceae) fruits extract. , 2021, Journal of ethnopharmacology.
[9] R. M. Mussury,et al. Changes in the Biological Characteristics of Plutella xylostella Using Ethanolic Plant Extracts , 2020, Gesunde Pflanzen.
[10] H. Siqueira,et al. Field resistance of Plutella xylostella (Lepidoptera: Plutellidae) to lufenuron: Inheritance and lack of cross-resistance to methoxyfenozide , 2020 .
[11] C. Cardoso,et al. Phytochemical Screening and Bioactivity of Ludwigia spp. in the Control of Plutella xylostella (Lepidoptera: Plutellidae) , 2020, Insects.
[12] M. Jin,et al. Combined transcriptomic and proteomic analysis of flubendiamide resistance in Plutella xylostella , 2020 .
[13] M. Picanço,et al. Climate and host plants mediating seasonal dynamics and within-plant distribution of the diamondback moth (Plutella xylostella) , 2020 .
[14] Z. Li,et al. Biochemical Mechanisms, Cross-resistance and Stability of Resistance to Metaflumizone in Plutella xylostella , 2020, Insects.
[15] Zehua Zhang,et al. Quercetin Affects the Growth and Development of the Grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). , 2019, Journal of economic entomology.
[16] J. R. Paula,et al. Estudo Morfo-Anatômico, Triagem Fitoquímica, Avaliação da Atividade Antimicrobiana do Extrato Bruto e Frações das Folhas de Miconia albicans (Sw.) Triana , 2019, Fronteiras: Journal of Social, Technological and Environmental Science.
[17] R. M. Mussury,et al. Botanical Extracts of the Brazilian Savannah Affect Feeding and Oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) , 2019, Journal of Agricultural Science.
[18] M. Mescher,et al. Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid , 2019, Journal of Chemical Ecology.
[19] Shuwen Wu,et al. Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China. , 2018, Pest management science.
[20] I. Malami,et al. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. , 2018, Journal of ethnopharmacology.
[21] Xiwu Gao,et al. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). , 2018, Pest management science.
[22] A. Lourenção,et al. Role of the Rutin and Genistein Flavonoids in Soybean Resistance to Piezodorus guildinii (Hemiptera: Pentatomidae) , 2018, Arthropod-Plant Interactions.
[23] P. Galtier,et al. Safety of hydroxyanthracene derivatives for use in food , 2018, EFSA journal. European Food Safety Authority.
[24] R. M. Mussury,et al. Chemical Compounds and Bioactivity of Aqueous Extracts of Alibertia spp. in the Control of Plutella xylostella L. (Lepidoptera: Plutellidae) , 2017, Insects.
[25] R. Moral,et al. Half-Normal Plots and Overdispersed Models in R: The hnp Package , 2017 .
[26] J. Takahashi,et al. Flavonol triglycosides of leaves from Maytenus robusta with acetylcholinesterase inhibition , 2017 .
[27] R. Humber,et al. Potential of Entomopathogenic Fungi as Biological Control Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With Chemical Insecticides , 2016, Journal of Economic Entomology.
[28] S. Palacios,et al. Bioinsecticidal effect of the flavonoids pinocembrin and quercetin against Spodoptera frugiperda , 2015, Journal of Pest Science.
[29] Justyna Mierziak,et al. Flavonoids as Important Molecules of Plant Interactions with the Environment , 2014, Molecules.
[30] F. Mazzonetto,et al. Ação de Inseticidas Botânicos sobre a Preferência Alimentar e sobre Posturas de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em Milho , 2013 .
[31] M. Zubair,et al. In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius , 2012, Molecules.
[32] Kevin W Eliceiri,et al. NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.
[33] K. Paaijmans,et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti , 2011, Proceedings of the National Academy of Sciences.
[34] Shuwen Wu,et al. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. , 2010, Pest management science.
[35] T. Hothorn,et al. Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.
[36] M. Yousfi,et al. ANTIOXIDANT ACTIVITY OF SOME ALGERIAN MEDICINAL PLANTS EXTRACTS CONTAINING PHENOLIC COMPOUNDS , 2006 .
[37] D. Treutter. Significance of flavonoids in plant resistance: a review , 2006 .
[38] A. Kumaran,et al. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus , 2006 .
[39] A. Shelton,et al. Monitoring of Diamondback Moth (Lepidoptera: Plutellidae) Resistance to Spinosad, Indoxacarb, and Emamectin Benzoate , 2006, Journal of economic entomology.
[40] M. Dicke,et al. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth , 2005 .
[41] M. Simmonds. Flavonoid-insect interactions: recent advances in our knowledge. , 2003, Phytochemistry.
[42] M. Pansera,et al. Análise de taninos totais em plantas aromáticas e medicinais cultivadas no Nordeste do Rio Grande do Sul , 2003 .
[43] G. Gujar,et al. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes , 2003 .
[44] S. Juliano,et al. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes , 2002, Oecologia.
[45] J. Harborne,et al. Advances in flavonoid research since 1992. , 2000, Phytochemistry.
[46] J. Semir,et al. O gênero Miconia Ruiz & Pav. (Melastomataceae) no Estado de São Paulo , 1996 .
[47] B. K. Mitchell,et al. Oviposition site selection by the diamondback moth,Plutella xylostella (L.) (Lepidoptera: Plutellidae) , 1996, Journal of Insect Behavior.
[48] N. S. Talekar,et al. Characteristics Of Parasitism Of Plutella Xylostella (Lep., Plutellidae) By Oomyzus Sokolowskii (Hym., Eulophidae) , 1996, Entomophaga.
[49] J. Renwick,et al. Relative activities of glucosinolates as oviposition stimulants forPieris rapae andP. napi oleracea , 1994, Journal of Chemical Ecology.
[50] J. Møller. Investigations on a laboratory culture of the Diamond‐back Moth, Plutella maculipennis (Curt.) (Lep., Tineidae) , 1988 .
[51] K. Kumar. Sublethal effects of insecticides on diamondback moth, Plutella xylostella (L.) , 1984 .
[52] M. Kogan,et al. The host-plant range of Lema trilineata daturaphila (Coleoptera: Chrysomelidae). , 1970 .
[53] A. J. Thorsteinson,et al. FOOD PLANT RELATIONSHIPS OF THE DIAMOND‐BACK MOTH (PLUTELLA MACULIPENNIS (CURT.)) II. Sensory Regulation of Oviposition of the Adult Female , 1960 .
[54] A. C. Menezes,et al. An Overview of Miconia Genus: Chemical Constituents and Biological Activities , 2019 .
[55] R. M. Mussury,et al. Feeding preference of Plutella xylostella for leaves treated with plant extracts. , 2016, Anais da Academia Brasileira de Ciencias.
[56] G. D. Bello,et al. Toxicity and repellency of nine medicinal plants against Tribolium castaneum in stored wheat , 2013 .
[57] M. Navarro-Silva,et al. Review of semiochemicals that mediate the oviposition of mosquitoes: a possible sustainable tool for the control and monitoring of Culicidae , 2009 .
[58] U. Murty,et al. Antifeedant activity of Spilanthes acmella flower head extract against Spodoptera litura (Fabricius). , 2009 .
[59] M. Isman. Botanical insecticides: for richer, for poorer. , 2008, Pest management science.
[60] Matías García,et al. Insecticidal and antifeedant effects of Junellia aspera (Verbenaceae) triterpenes and derivatives on Sitophilus oryzae (Coleoptera: Curculionidae) , 2005 .
[61] Toshio Nagatomi,et al. The discovery of pyridalyl: a novel insecticidal agent for controlling lepidopterous pests. , 2004, Pest management science.
[62] S. Smith,et al. Effects of plant flavonoids and other allelochemicals on insect cytochrome P-450 dependent steroid hydroxylase activity. , 1993, Insect biochemistry and molecular biology.
[63] J. Pastore,et al. Role of superoxide dismutase in the protection and tolerance to the prooxidant allelochemical quercetin in Papilio polyxenes, Spodoptera eridania, and Trichoplusia ni , 1991 .