Leaf Extracts of Miconia albicans (Sw.) Triana (Melastomataceae) Prevent the Feeding and Oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)

Sustainability in food production is an increasingly discussed issue nowadays; therefore, demands for research that can reduce production costs and ensure the quality and autonomy of production are relevant, with attention to the use of plants due to their importance in biodiversity. Thus, the objective of this research was to evaluate the bioactivity, feeding preference, and oviposition preference of Miconia albicans botanical extracts at concentrations of 1%, 5%, and 10% against Plutella xylostella. We observed reduced larval duration, larval survival, female hatching success, and repellence of oviposition and feeding for all concentrations. For higher concentrations, the extracts showed a larval mortality rate of 58%, a feeding reduction of 82%, and an oviposition reduction of 94%, showing potential for pest control. Phytochemical analyses identified phenolic compounds, flavonoids, and tannins, which are substances with repellent and larvicidal properties. This is the first report on the phytosanitary potential of M. albicans, showing that the plant has both lethal and sublethal effects on P. xylostella.

[1]  R. M. Mussury,et al.  Tradescantia pallida (Commelinaceae) Promotes Reductions in Plutella xylostella (Lepidoptera: Plutellidae) Populations , 2022, Agronomy.

[2]  R. M. Mussury,et al.  Antifeeding and Oviposition Deterrent Effect of Ludwigia spp. (Onagraceae) against Plutella xylostella (Lepidoptera: Plutellidae) , 2022, Plants.

[3]  G. Felton,et al.  Sorghum and maize flavonoids are detrimental to growth and survival of fall armyworm Spodoptera frugiperda , 2022, Journal of Pest Science.

[4]  K. Kümmerer,et al.  Flavonoids as biopesticides - Systematic assessment of sources, structures, activities and environmental fate. , 2022, The Science of the total environment.

[5]  Meihong Lin,et al.  Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules and Activities: Part Ⅰ (Aphanamixis-Chukrasia) , 2021, International journal of molecular sciences.

[6]  R. M. Mussury,et al.  Extratos aquosos de Psychotria sp. interferem na biologia de Plutella xylostella , 2021, Research, Society and Development.

[7]  Shaoli Wang,et al.  Insecticide Resistance Monitoring of the Diamondback Moth (Lepidoptera: Plutellidae) Populations in China , 2021, Journal of Economic Entomology.

[8]  Franciele Q. Ames,et al.  Chemical profile, antioxidant and anti-inflammatory properties of Miconia albicans (Sw.) Triana (Melastomataceae) fruits extract. , 2021, Journal of ethnopharmacology.

[9]  R. M. Mussury,et al.  Changes in the Biological Characteristics of Plutella xylostella Using Ethanolic Plant Extracts , 2020, Gesunde Pflanzen.

[10]  H. Siqueira,et al.  Field resistance of Plutella xylostella (Lepidoptera: Plutellidae) to lufenuron: Inheritance and lack of cross-resistance to methoxyfenozide , 2020 .

[11]  C. Cardoso,et al.  Phytochemical Screening and Bioactivity of Ludwigia spp. in the Control of Plutella xylostella (Lepidoptera: Plutellidae) , 2020, Insects.

[12]  M. Jin,et al.  Combined transcriptomic and proteomic analysis of flubendiamide resistance in Plutella xylostella , 2020 .

[13]  M. Picanço,et al.  Climate and host plants mediating seasonal dynamics and within-plant distribution of the diamondback moth (Plutella xylostella) , 2020 .

[14]  Z. Li,et al.  Biochemical Mechanisms, Cross-resistance and Stability of Resistance to Metaflumizone in Plutella xylostella , 2020, Insects.

[15]  Zehua Zhang,et al.  Quercetin Affects the Growth and Development of the Grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). , 2019, Journal of economic entomology.

[16]  J. R. Paula,et al.  Estudo Morfo-Anatômico, Triagem Fitoquímica, Avaliação da Atividade Antimicrobiana do Extrato Bruto e Frações das Folhas de Miconia albicans (Sw.) Triana , 2019, Fronteiras: Journal of Social, Technological and Environmental Science.

[17]  R. M. Mussury,et al.  Botanical Extracts of the Brazilian Savannah Affect Feeding and Oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) , 2019, Journal of Agricultural Science.

[18]  M. Mescher,et al.  Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid , 2019, Journal of Chemical Ecology.

[19]  Shuwen Wu,et al.  Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China. , 2018, Pest management science.

[20]  I. Malami,et al.  A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. , 2018, Journal of ethnopharmacology.

[21]  Xiwu Gao,et al.  Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). , 2018, Pest management science.

[22]  A. Lourenção,et al.  Role of the Rutin and Genistein Flavonoids in Soybean Resistance to Piezodorus guildinii (Hemiptera: Pentatomidae) , 2018, Arthropod-Plant Interactions.

[23]  P. Galtier,et al.  Safety of hydroxyanthracene derivatives for use in food , 2018, EFSA journal. European Food Safety Authority.

[24]  R. M. Mussury,et al.  Chemical Compounds and Bioactivity of Aqueous Extracts of Alibertia spp. in the Control of Plutella xylostella L. (Lepidoptera: Plutellidae) , 2017, Insects.

[25]  R. Moral,et al.  Half-Normal Plots and Overdispersed Models in R: The hnp Package , 2017 .

[26]  J. Takahashi,et al.  Flavonol triglycosides of leaves from Maytenus robusta with acetylcholinesterase inhibition , 2017 .

[27]  R. Humber,et al.  Potential of Entomopathogenic Fungi as Biological Control Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With Chemical Insecticides , 2016, Journal of Economic Entomology.

[28]  S. Palacios,et al.  Bioinsecticidal effect of the flavonoids pinocembrin and quercetin against Spodoptera frugiperda , 2015, Journal of Pest Science.

[29]  Justyna Mierziak,et al.  Flavonoids as Important Molecules of Plant Interactions with the Environment , 2014, Molecules.

[30]  F. Mazzonetto,et al.  Ação de Inseticidas Botânicos sobre a Preferência Alimentar e sobre Posturas de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em Milho , 2013 .

[31]  M. Zubair,et al.  In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius , 2012, Molecules.

[32]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[33]  K. Paaijmans,et al.  Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti , 2011, Proceedings of the National Academy of Sciences.

[34]  Shuwen Wu,et al.  Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. , 2010, Pest management science.

[35]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[36]  M. Yousfi,et al.  ANTIOXIDANT ACTIVITY OF SOME ALGERIAN MEDICINAL PLANTS EXTRACTS CONTAINING PHENOLIC COMPOUNDS , 2006 .

[37]  D. Treutter Significance of flavonoids in plant resistance: a review , 2006 .

[38]  A. Kumaran,et al.  Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus , 2006 .

[39]  A. Shelton,et al.  Monitoring of Diamondback Moth (Lepidoptera: Plutellidae) Resistance to Spinosad, Indoxacarb, and Emamectin Benzoate , 2006, Journal of economic entomology.

[40]  M. Dicke,et al.  Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth , 2005 .

[41]  M. Simmonds Flavonoid-insect interactions: recent advances in our knowledge. , 2003, Phytochemistry.

[42]  M. Pansera,et al.  Análise de taninos totais em plantas aromáticas e medicinais cultivadas no Nordeste do Rio Grande do Sul , 2003 .

[43]  G. Gujar,et al.  Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes , 2003 .

[44]  S. Juliano,et al.  Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes , 2002, Oecologia.

[45]  J. Harborne,et al.  Advances in flavonoid research since 1992. , 2000, Phytochemistry.

[46]  J. Semir,et al.  O gênero Miconia Ruiz & Pav. (Melastomataceae) no Estado de São Paulo , 1996 .

[47]  B. K. Mitchell,et al.  Oviposition site selection by the diamondback moth,Plutella xylostella (L.) (Lepidoptera: Plutellidae) , 1996, Journal of Insect Behavior.

[48]  N. S. Talekar,et al.  Characteristics Of Parasitism Of Plutella Xylostella (Lep., Plutellidae) By Oomyzus Sokolowskii (Hym., Eulophidae) , 1996, Entomophaga.

[49]  J. Renwick,et al.  Relative activities of glucosinolates as oviposition stimulants forPieris rapae andP. napi oleracea , 1994, Journal of Chemical Ecology.

[50]  J. Møller Investigations on a laboratory culture of the Diamond‐back Moth, Plutella maculipennis (Curt.) (Lep., Tineidae) , 1988 .

[51]  K. Kumar Sublethal effects of insecticides on diamondback moth, Plutella xylostella (L.) , 1984 .

[52]  M. Kogan,et al.  The host-plant range of Lema trilineata daturaphila (Coleoptera: Chrysomelidae). , 1970 .

[53]  A. J. Thorsteinson,et al.  FOOD PLANT RELATIONSHIPS OF THE DIAMOND‐BACK MOTH (PLUTELLA MACULIPENNIS (CURT.)) II. Sensory Regulation of Oviposition of the Adult Female , 1960 .

[54]  A. C. Menezes,et al.  An Overview of Miconia Genus: Chemical Constituents and Biological Activities , 2019 .

[55]  R. M. Mussury,et al.  Feeding preference of Plutella xylostella for leaves treated with plant extracts. , 2016, Anais da Academia Brasileira de Ciencias.

[56]  G. D. Bello,et al.  Toxicity and repellency of nine medicinal plants against Tribolium castaneum in stored wheat , 2013 .

[57]  M. Navarro-Silva,et al.  Review of semiochemicals that mediate the oviposition of mosquitoes: a possible sustainable tool for the control and monitoring of Culicidae , 2009 .

[58]  U. Murty,et al.  Antifeedant activity of Spilanthes acmella flower head extract against Spodoptera litura (Fabricius). , 2009 .

[59]  M. Isman Botanical insecticides: for richer, for poorer. , 2008, Pest management science.

[60]  Matías García,et al.  Insecticidal and antifeedant effects of Junellia aspera (Verbenaceae) triterpenes and derivatives on Sitophilus oryzae (Coleoptera: Curculionidae) , 2005 .

[61]  Toshio Nagatomi,et al.  The discovery of pyridalyl: a novel insecticidal agent for controlling lepidopterous pests. , 2004, Pest management science.

[62]  S. Smith,et al.  Effects of plant flavonoids and other allelochemicals on insect cytochrome P-450 dependent steroid hydroxylase activity. , 1993, Insect biochemistry and molecular biology.

[63]  J. Pastore,et al.  Role of superoxide dismutase in the protection and tolerance to the prooxidant allelochemical quercetin in Papilio polyxenes, Spodoptera eridania, and Trichoplusia ni , 1991 .