Phase behavior of (CO2 + H2) and (CO2 + N2) at temperatures between (218.15 and 303.15) K at pressures up to 15 MPa

Abstract Vapor–liquid equilibrium data are reported for the binary systems (CO 2  + H 2 ) and (CO 2  + N 2 ) at temperatures between (218.15 and 303.15) K at pressures ranging from the vapor pressure of CO 2 to approximately 15 MPa. These data were measured in a new analytical apparatus which is described in detail. The results are supported by a rigorous assessment of uncertainties and careful validation measurements. The new data help to resolve discrepancies between previous studies, especially for the (CO 2  + H 2 ) system. Experimental measurements of the three-phase solid–liquid–vapor locus are also reported for both binary systems. The vapor–liquid equilibrium data are modeled with the Peng–Robinson (PR) equation of state with two binary interaction parameters: one, a linear function of inverse temperature, applied to the unlike term in the PR attractive-energy parameter; and the other, taken to be constant, applied to the unlike term in the PR co-volume parameter. This model is able to fit the experimental data in a satisfactory way except in the critical region. We also report alternative binary parameter sets optimized for improved performance at either temperatures below 243 K or temperatures above 273 K. A simple predictive model for the three-phase locus is also presented and compared with the experimental data.

[1]  P. L. Barrick,et al.  LIQUID-VAPOR EQUILIBRIA OF THE HYDROGEN-CARBON DIOXIDE SYSTEM. , 1968 .

[2]  Benjamin C.-Y. Lu,et al.  Simultaneous determination of vapor-liquid equilibrium and molar volumes for coexisting phases up to the critical temperature with a static method , 1993 .

[3]  C. Y. Tsang,et al.  Phase equilibria in the H2/CO2 system at temperatures from 220 to 290 K and pressures to 172 MPa , 1981 .

[4]  J. Trusler,et al.  Equation of State for Solid Phase I of Carbon Dioxide Valid for Temperatures up to 800 K and Pressures up to 12 GPa , 2011 .

[5]  Petter Nekså,et al.  Low-temperature syngas separation and CO2 capture for enhanced efficiency of IGCC power plants , 2011 .

[6]  H. Knapp,et al.  Gas solubilities in liquid solvents at high pressures: apparatus and results for binary and ternary systems of N2, CO2 and CH3OH , 1984 .

[7]  Roland Span,et al.  A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa , 2000 .

[8]  Esther Forte,et al.  Experimental and modeling study of the phase behavior of (methane + CO2 + water) mixtures. , 2014, Journal of Physical Chemistry B.

[9]  Junhang Dong,et al.  High pressure vapor liquid equilibria at 293 K for systems containing nitrogen, methane and carbon dioxide , 1992 .

[10]  Yasuhiko Arai,et al.  THE COMPRESSIBILITY FACTORS OF HYDROGEN METHANE, HYDROGEN-ETHANE AND HYDROGEN-PROPANE GASEOUS MIXTURES , 1977 .

[11]  Masahiro Yorizane,et al.  Vapor Liquid Equilibrium at High Pressure , 1970 .

[12]  A. Kidnay,et al.  Liquid-vapor equilibriums at 270.00 K for systems containing nitrogen, methane, and carbon dioxide , 1978 .

[13]  T. S. Brown,et al.  Vapor-liquid equilibria in the nitrogen + carbon dioxide + ethane system , 1989 .

[14]  Taher A. Al-Sahhaf,et al.  Vapor—liquid equilibria for the ternary system N2 + CO2 + CH4 at 230 and 250 K , 1990 .

[15]  玄一 上西,et al.  液体炭酸と水素,窒素,酸素ガスとの気液平衡 , 1966 .

[16]  M. Kirchbach,et al.  Trigonometric quark confinement potential of QCD traits , 2007, 0708.2521.

[17]  R. D. Gunn,et al.  Prediction of thermodynamic properties of dense gas mixtures containing one or more of the quantum gases , 1966 .

[18]  M. Frenkel,et al.  Virial Coefficients of Pure Gases , 2002 .

[19]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[20]  J. Ottó,et al.  Über die Isothermen einiger Gase zwischen +400° und −183° , 1925 .

[21]  Taher A. Al-Sahhaf,et al.  Liquid + vapor equilibriums in the nitrogen + carbon dioxide + methane system , 1983 .

[22]  Masahiro Yorizane,et al.  New procedure for vapor-liquid equilibria. Nitrogen+carbon dioxide, methane+Freon 22, and methane+Freon 12 , 1985 .

[23]  T. Y. Kwak,et al.  Van der Waals mixing rules for cubic equations of state: applications for supercritical fluid extraction modelling , 1986 .

[24]  T. Wassenaar,et al.  Compressibility isotherms of hydrogen and deuterium at temperatures between-175C and + 150C (at densities up to 960 amagat) , 1959 .

[25]  Fariba Dehghani,et al.  Vapor-liquid equilibrium for binary systems of carbon dioxide + methanol, hydrogen + methanol, and hydrogen + carbon dioxide at high pressures , 2002 .

[26]  Vapor-liquid equilibria for the ternary system N2 + CO2 +n-C4H10 at 250 and 270 K1 , 1994 .

[27]  A. J. Kidnay,et al.  Vapor-liquid equilibria for the binary systems of nitrogen, carbon dioxide, and n-butane at temperatures from 220 to 344 K.☆ , 1989 .

[28]  T. Verschoyle Isotherms of hydrogen, of nitrogen, and of hydrogen-nitrogen mixtures, at 0° and 20° C., up to a pressure of 200 atmospheres , 1926 .

[29]  A. Kidnay,et al.  Vapor-liquid equilibria in the nitrogen + carbon dioxide + propane system from 240 to 330 K at pressures to 15 MPa , 1999 .