Jacobi Polynomials, Type II Codes, and Designs

Jacobi polynomials were introduced by Ozeki in analogy with Jacobi forms of lattices. They are useful to compute coset weight enumerators, and weight enumerators of children. We determine them in most interesting cases in length at most 32, and in some cases in length 72. We use them to construct group divisible designs, packing designs, covering designs, and (t,r)-designs in the sense of Calderbank-Delsarte. A major tool is invariant theory of finite groups, in particular simultaneous invariants in the sense of Schur, polarization, and bivariate Molien series. A combinatorial interpretation of the Aronhold polarization operator is given. New rank parameters for spaces of coset weight distributions and Jacobi polynomials are introduced and studied here.

[1]  S. Dougherty,et al.  New Extremal Self-Dual Codes of Length , 1999 .

[2]  Helmut Koch,et al.  On self-dual doubly-even extremal codes , 1990, Discret. Math..

[3]  Vera Pless,et al.  On the coveting radius of extremal self-dual codes , 1983, IEEE Trans. Inf. Theory.

[4]  Richard P. Stanley,et al.  Invariants of finite groups and their applications to combinatorics , 1979 .

[5]  Eiichi Bannai,et al.  Construction of Jacobi forms from certain combinatorial polynomials , 1996 .

[6]  Andrew M. Gleason,et al.  WEIGHT POLYNOMIALS OF SELF-DUAL CODES AND THE MacWILLIAMS IDENTITIES , 1970 .

[7]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[8]  G. Kuperberg,et al.  New constructions for covering designs , 1995, math/9502238.

[9]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[10]  Philippe Delsarte,et al.  Extending the T-design Concept , 1993 .

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  Michio Ozeki On the notion of Jacobi polynomials for codes , 1997 .

[13]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[14]  Vera Pless,et al.  A coding theoretic approach to extending designs , 1995, Discret. Math..

[15]  John H. Conway,et al.  On the Enumeration of Self-Dual Codes , 1980, J. Comb. Theory, Ser. A.

[16]  Vera Pless,et al.  A classification of self-orthogonal codes over GF(2) , 1972, Discret. Math..

[17]  N. J. A. Sloane,et al.  An Upper Bound for Self-Dual Codes , 1973, Inf. Control..

[18]  I.F. Blake,et al.  Introduction to the theory of error-correcting codes , 1984, Proceedings of the IEEE.

[19]  N. J. A. Sloane,et al.  A strengthening of the Assmus-Mattson theorem , 1991, IEEE Trans. Inf. Theory.

[20]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[21]  P. Camion,et al.  Coset Weight Enumerators of the Extremal Self-Dual Binary Codes of Length 32 , 1993 .

[22]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[23]  N. J. A. Sloane,et al.  On the Classification and Enumeration of Self-Dual Codes , 1975, J. Comb. Theory, Ser. A.

[24]  Masaaki Harada,et al.  New extremal self-dual codes of length 68 , 1999, IEEE Trans. Inf. Theory.

[25]  Philippe Delsarte,et al.  On Error-Correcting Codes and Invariant Linear Forms , 1993, SIAM J. Discret. Math..