Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention

[1]  Werner Lutzenberger,et al.  Selective attention increases the dependency of cortical responses on visual motion coherence in man. , 2008, Cerebral cortex.

[2]  Robert Oostenveld,et al.  Imaging the human motor system’s beta-band synchronization during isometric contraction , 2008, NeuroImage.

[3]  C. Tallon-Baudry,et al.  Neural Dissociation between Visual Awareness and Spatial Attention , 2008, The Journal of Neuroscience.

[4]  Alexa B. Roggeveen,et al.  Large-scale gamma-band phase synchronization and selective attention. , 2008, Cerebral cortex.

[5]  Ernst Niebur,et al.  High-frequency gamma activity (80–150Hz) is increased in human cortex during selective attention , 2008, Clinical Neurophysiology.

[6]  Maurizio Corbetta,et al.  Asymmetry of Anticipatory Activity in Visual Cortex Predicts the Locus of Attention and Perception , 2007, The Journal of Neuroscience.

[7]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[8]  Robert Oostenveld,et al.  Population activity in the human dorsal pathway predicts the accuracy of visual motion detection. , 2007, Journal of neurophysiology.

[9]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[10]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[11]  Bruce D. McCandliss,et al.  The Relation of Brain Oscillations to Attentional Networks , 2007, The Journal of Neuroscience.

[12]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[13]  A. Engel,et al.  High-frequency activity in human visual cortex is modulated by visual motion strength. , 2007, Cerebral cortex.

[14]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[15]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[16]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[17]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[18]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[19]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[20]  R. Oostenveld,et al.  Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas , 2006, The Journal of Neuroscience.

[21]  M. Corbetta,et al.  Brain signals for spatial attention predict performance in a motion discrimination task. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[23]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[24]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[25]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[26]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[27]  Kimron Shapiro,et al.  Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[29]  Andreas Keil,et al.  Neuronal Synchronization and Selective Color Processing in the Human Brain , 2004, Journal of Cognitive Neuroscience.

[30]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[31]  R. Eckhorn,et al.  Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. , 2004, Cerebral cortex.

[32]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[33]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[34]  M. Corbetta,et al.  Quantitative analysis of attention and detection signals during visual search. , 2003, Journal of neurophysiology.

[35]  P. König,et al.  A Functional Gamma-Band Defined by Stimulus-Dependent Synchronization in Area 18 of Awake Behaving Cats , 2003, The Journal of Neuroscience.

[36]  Geoffrey M. Ghose,et al.  Attentional modulation in visual cortex depends on task timing , 2002, Nature.

[37]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[38]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[39]  O. Bertrand,et al.  Oscillatory Synchrony between Human Extrastriate Areas during Visual Short-Term Memory Maintenance , 2001, The Journal of Neuroscience.

[40]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[41]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[42]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[43]  A. Schnitzler,et al.  Dynamic imaging of coherent sources: Studying neural interactions in the human brain. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[45]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[46]  A. Villringer,et al.  Involvement of the human frontal eye field and multiple parietal areas in covert visual selection during conjunction search , 2000, The European journal of neuroscience.

[47]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[48]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[49]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[50]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[51]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[52]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[53]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[54]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[55]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[56]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[57]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. , 1998, Brain : a journal of neurology.

[58]  S. Hillyard,et al.  Event-related brain potentials in the study of visual selective attention. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[60]  G. Pfurtscheller,et al.  Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[61]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[62]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[63]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[65]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .