A new scheme for identifying free surface particles in improved SPH

The present paper proposes a new scheme for identifying free surface particles in an improved SPH (Smoothed Particle Hydrodynamics). With the development of the SPH, free surface identification becomes a key challenge in free surface flow simulations, especially for violent breaking water waves. According to numerical tests, existing free surface identified schemes are not reliable for weakly compressible SPH when violent waves are modeled. The new free surface identification scheme suggested here considers changes in density ratio and three auxiliary functions. Although this new scheme originates from a scheme for another meshfree method (MLPG_R method), it includes several improvements, especially developed for the improved SPH. The limited numerical tests have indicated that the scheme does not significantly increase CPU time required, but it considerably improves the identification of free surface particles.

[1]  Romesh C. Batra,et al.  Wave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method , 2007, J. Comput. Phys..

[2]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[3]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[4]  Gui-Rong Liu,et al.  A gradient smoothing method (GSM) for fluid dynamics problems , 2008 .

[5]  Guirong Liu,et al.  Modeling incompressible flows using a finite particle method , 2005 .

[6]  G. M. Zhang,et al.  Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test , 2008, J. Comput. Phys..

[7]  Gui-Rong Liu,et al.  Restoring particle consistency in smoothed particle hydrodynamics , 2006 .

[8]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[9]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[10]  Zhi Zong,et al.  Smoothed particle hydrodynamics for numerical simulation of underwater explosion , 2003 .

[11]  Songdong Shao,et al.  Incompressible SPH simulation of water entry of a free‐falling object , 2009 .

[12]  P. Cleary,et al.  CONDUCTION MODELING USING SMOOTHED PARTICLE HYDRODYNAMICS , 1999 .

[13]  Salvatore Marrone,et al.  Fast free-surface detection and level-set function definition in SPH solvers , 2010, J. Comput. Phys..

[14]  S. Hess,et al.  Viscoelastic flows studied by smoothed particle dynamics , 2002 .

[15]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[16]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[17]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[18]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[19]  D. Graham,et al.  Simulation of wave overtopping by an incompressible SPH model , 2006 .

[20]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[21]  Masashi Kashiwagi,et al.  Numerical simulation of violent sloshing by a CIP-based method , 2006 .

[22]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[23]  Hitoshi Gotoh,et al.  Key issues in the particle method for computation of wave breaking , 2006 .

[24]  Xing Zheng,et al.  Numerical simulation of dam breaking using smoothed particle hydrodynamics and viscosity behavior , 2010 .

[25]  Yuxin Zhang Application of MPS in 3D dam breaking flows , 2011 .

[26]  W. Benz,et al.  Simulations of brittle solids using smooth particle hydrodynamics , 1995 .

[27]  Solid friction at high sliding velocities: an explicit 3D dynamical SPH approach , 1998, cond-mat/9809213.

[28]  R. G. Owens,et al.  A numerical study of the SPH method for simulating transient viscoelastic free surface flows , 2006 .

[29]  Guirong Liu,et al.  Investigations into water mitigation using a meshless particle method , 2002 .

[30]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[31]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[32]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[33]  Edmond Y.M. Lo,et al.  Simulation of near-shore solitary wave mechanics by an incompressible SPH method , 2002 .

[34]  R. Tanner,et al.  SPH simulations of transient viscoelastic flows at low Reynolds number , 2005 .

[35]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[36]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[37]  Didier Sornette,et al.  Solid friction at high sliding velocities: An explicit three‐dimensional dynamical smoothed particle hydrodynamics approach , 1999 .

[38]  Aurèle Parriaux,et al.  A regularized Lagrangian finite point method for the simulation of incompressible viscous flows , 2008, J. Comput. Phys..

[39]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[40]  C. Ancey,et al.  Improved SPH methods for simulating free surface flows of viscous fluids , 2009 .

[41]  Juntao Zhou,et al.  MLPG_R Method for Numerical Simulation of 2D Breaking Waves , 2009 .

[42]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[43]  YuMin Cheng,et al.  The complex variable element-free Galerkin (CVEFG) method for elastic large deformation problems , 2011 .

[44]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[45]  Qingwei Ma MLPG Method Based on Rankine Source Solution for Simulating Nonlinear Water Waves , 2005 .