Deblurring shaken and partially saturated images

We address the problem of deblurring images degraded by camera shake blur and saturated or over-exposed pixels. Saturated pixels are a problem for existing non-blind deblurring algorithms because they violate the assumption that the image formation process is linear, and often cause significant artifacts in deblurred outputs. We propose a forward model that includes sensor saturation, and use it to derive a deblurring algorithm properly treating saturated pixels. By using this forward model and reasoning about the causes of artifacts in the deblurred results, we obtain significantly better results than existing deblurring algorithms. Further we propose an efficient approximation of the forward model leading to a significant speed-up.

[1]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[2]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[3]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[4]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[5]  Michael S. Brown,et al.  Richardson-Lucy Deblurring for Scenes under a Projective Motion Path , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[8]  Bernhard Schölkopf,et al.  Efficient filter flow for space-variant multiframe blind deconvolution , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  S. B. Kang,et al.  Image deblurring using inertial measurement sensors , 2010, SIGGRAPH 2010.

[10]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[11]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, CVPR.

[12]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[13]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[14]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[15]  Ankit Gupta,et al.  Single Image Deblurring Using Motion Density Functions , 2010, ECCV.

[16]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[17]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[18]  Bernhard Schölkopf,et al.  Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM , 2010, 2010 IEEE International Conference on Image Processing.

[19]  Bernhard Schölkopf,et al.  Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake , 2010, NIPS.

[20]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[21]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[22]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.