Hofmann-type rearrangement of imides by in situ generation of imide-hypervalent iodines(III) from iodoarenes.

The Hofmann-type rearrangement of aromatic and aliphatic imides using a hypervalent iodine(III) reagent generated in situ from PhI, m-CPBA, and TsOH·H(2)O proceeded in the presence of a base in alcohol to provide anthranilic acid derivatives and amino acid derivatives in high yields, respectively. This reaction proceeds through a tandem reaction via alcoholysis followed by a Hofmann rearrangement promoted by the formation of an imide-λ(3)-iodane intermediate.

[1]  K. Miyamoto,et al.  A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant. , 2012, Chemical communications.

[2]  Sukbok Chang,et al.  Intermolecular oxidative C-N bond formation under metal-free conditions: control of chemoselectivity between aryl sp2 and benzylic sp3 C-H bond imidation. , 2011, Journal of the American Chemical Society.

[3]  José A. Souto,et al.  Enantioselective metal-free diamination of styrenes. , 2011, Angewandte Chemie.

[4]  K. N. Shivananda,et al.  Bromamine-B/PdCl2 is an Efficient System for the Synthesis of Anthranilic Acids from Indoles and Indigos , 2010 .

[5]  M. Yusubov,et al.  Hofmann rearrangement of carboxamides mediated by hypervalent iodine species generated in situ from iodobenzene and oxone: reaction scope and limitations. , 2010, Organic letters.

[6]  Jing Zhao,et al.  Room-Temperature Copper-CatalyzedSynthesis of Primary Arylamines from Aryl Halides and Aqueous Ammonia , 2010 .

[7]  R. Qiao,et al.  Copper-catalyzed direct amination of ortho-functionalized haloarenes with sodium azide as the amino source. , 2010, The Journal of organic chemistry.

[8]  Y. Miwa,et al.  Concise one-pot tandem synthesis of indoles and isoquinolines from amides. , 2009, Angewandte Chemie.

[9]  H. Togo,et al.  Ion-supported PhI-catalyzed cyclization of N-methoxy-2-arylethanesulfonamides with mCPBA , 2009 .

[10]  F. Gellibert,et al.  Design of novel quinazoline derivatives and related analogues as potent and selective ALK5 inhibitors. , 2009, Bioorganic & medicinal chemistry letters.

[11]  T. Dohi,et al.  Hypervalent iodine reagents as a new entrance to organocatalysts. , 2009, Chemical communications.

[12]  K. Ishihara,et al.  Hypervalent iodine-mediated oxidation of alcohols. , 2009, Chemical communications.

[13]  K. Booker‐Milburn,et al.  Room-temperature palladium-catalyzed C-H activation: ortho-carbonylation of aniline derivatives. , 2009, Angewandte Chemie.

[14]  P. Stang,et al.  Chemistry of polyvalent iodine. , 2008, Chemical reviews.

[15]  K. Miyamoto,et al.  Catalytic Version of and Reuse in Hypervalent Organo‐λ3‐ and ‐λ5‐iodane Oxidation , 2008 .

[16]  C. Tomasini,et al.  Synthesis of imidazolidin-2-one-4-carboxylate and of (tetrahydro)pyrimidin-2-one-5-carboxylate via an efficient modification of the Hofmann rearrangement. , 2008, Organic & biomolecular chemistry.

[17]  R. Andruszkiewicz,et al.  Facile Synthetic Route to Selectively Protected Spermidine Homologues , 2008 .

[18]  A. Kirschning,et al.  Preparation and X-ray structures of 3-[Bis(trifluoroacetoxy)iodo]benzoic acid and 3-[hydroxy(tosyloxy)iodo]benzoic acid: new recyclable hypervalent iodine reagents. , 2008, The Journal of organic chemistry.

[19]  Qipeng Yuan,et al.  Biosynthesis of [1-15N] l-tryptophan from 15N labeled anthranilic acid by fermentation of Candida utilis mutant , 2008, Amino Acids.

[20]  C. Vlaar,et al.  Synthesis of 1,4-dihydro-benzo[d][1,3]oxazin-2-ones from phthalides via an aminolysis-Hofmann rearrangement protocol. , 2007, Tetrahedron letters.

[21]  F. Tillequin Rutaceous alkaloids as models for the design of novel antitumor drugs , 2007, Phytochemistry Reviews.

[22]  N. Argade,et al.  The Chemistry of Recently Isolated Naturally Occurring Quinazolinone Alkaloids , 2006 .

[23]  T. Wirth,et al.  Hypervalent iodine goes catalytic. , 2006, Angewandte Chemie.

[24]  A. Subramanian,et al.  Auto-redox reaction: tin(II) chloride-mediated one-step reductive cyclization leading to the synthesis of novel biheterocyclic 5,6-dihydro-quinazolino[4,3-b]quinazolin-8-ones with three-point diversity. , 2006, The Journal of organic chemistry.

[25]  Chao‐Jun Li,et al.  Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions , 2006 .

[26]  V. Onnis,et al.  New potential anticancer agents based on the anthranilic acid scaffold: synthesis and evaluation of biological activity. , 2005, Journal of medicinal chemistry.

[27]  P. Guiry,et al.  Synthesis of Quinazolinones and Quinazolines , 2005 .

[28]  T. Nomura,et al.  Luotonin A: A Lead toward Anti-Cancer Agent Development , 2005 .

[29]  J. Fettinger,et al.  Stannous chloride in alcohol: a one-pot conversion of 2-nitro-N-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones. , 2005, The Journal of organic chemistry.

[30]  Libing Yu,et al.  Three-component one-pot total syntheses of glyantrypine, fumiquinazoline F, and fiscalin B promoted by microwave irradiation. , 2005, The Journal of organic chemistry.

[31]  R. Moriarty Organohypervalent iodine: development, applications, and future directions. , 2005, The Journal of organic chemistry.

[32]  Ping Liu,et al.  Synthesis of Alkylammonium Tosylates with Poly{[4‐Hydroxy(Tosyloxy)Iodo]Styrene} , 2005 .

[33]  T. Heffner,et al.  Structure−Activity Relationships of Pregabalin and Analogues That Target the α2-δ Protein , 2005 .

[34]  A. Kamal,et al.  Microwave enhanced reduction of nitro and azido arenes to N-arylformamides employing Zn–HCOONH4: synthesis of 4(3H)-quinazolinones and pyrrolo[2,1-c][1,4]benzodiazepines , 2004 .

[35]  G. Koser The Synthesis of Heterocyclic Compounds with Hypervalent Organoiodine Reagents , 2004 .

[36]  R. Katakai,et al.  Facile synthesis of Nα‐protected‐l‐α,γ‐diaminobutyric acids mediated by polymer‐supported hypervalent iodine reagent in water , 2004 .

[37]  Akihisa Maeda,et al.  Preparation and reactivity of 1,3,5,7-tetrakis[4-(diacetoxyiodo)phenyl]adamantane, a recyclable hypervalent iodine(III) reagent. , 2004, Angewandte Chemie.

[38]  Matthew C. Davis,et al.  Conversion of a Ketone to a Geminal Bisacetamide: Synthesis of 1,1-Bisacetamidocyclohexane , 2003 .

[39]  T. Wirth Hypervalent Iodine Chemistry , 2003 .

[40]  H. Togo,et al.  Synthetic Uses of Organohypervalent Iodine Compounds Through Radical Pathways , 2001 .

[41]  Longqin Hu,et al.  A facile synthesis of 2-oxazolidinones via Hofmann rearrangement mediated by bis(trifluoroacetoxy)iodobenzene , 2001 .

[42]  O. Prakash,et al.  Hypervalent Iodine Oxidative Rearrangement of Anthranilamides, Salicylamides and Some β-Substituted Amides: A New and Convenient Synthesis of 2-Benzimidazolones, 2-Benzoxazolones and Related Compounds , 2001 .

[43]  Alper,et al.  Palladium-catalyzed cyclocarbonylation of o-iodoanilines with heterocumulenes: regioselective preparation of 4(3H)-quinazolinone derivatives , 2000, The Journal of organic chemistry.

[44]  R. Pascal,et al.  Synthesis of longitudinally twisted polycyclic aromatic hydrocarbons via a highly substituted aryne , 1990 .

[45]  L. Hadjiarapoglou,et al.  Phenyliodine(III) Bis[phthalimidate]: A Novel Polyvalent Iodine Compound , 1983 .