Quantum Algorithms for Quantum Chemistry based on the sparsity of the CI-matrix

Quantum chemistry provides a target for quantum simulation of considerable scientific interest and industrial importance. The majority of algorithms to date have been based on a second-quantized representation of the electronic structure Hamiltonian - necessitating qubit requirements that scale linearly with the number of orbitals. The scaling of the number of gates for such methods, while polynomial, presents some serious experimental challenges. However, because the number of electrons is a good quantum number for the electronic structure problem it is unnecessary to store the full Fock space of the orbitals. Representation of the wave function in a basis of Slater determinants for fixed electron number suffices. However, to date techniques for the quantum simulation of the Hamiltonian represented in this basis - the CI-matrix - have been lacking. We show how to apply techniques developed for the simulation of sparse Hamiltonians to the CI-matrix. We prove a number of results exploiting the structure of the CI-matrix, arising from the Slater rules which define it, to improve the application of sparse Hamiltonian simulation techniques in this case. We show that it is possible to use the minimal number of qubits to represent the wavefunction, and that these methods can offer improved scaling in the number of gates required in the limit of fixed electron number and increasing basis set size relevant for high-accuracy calculations. We hope these results open the door to further investigation of sparse Hamiltonian simulation techniques in the context of the quantum simulation of quantum chemistry.

[1]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[2]  P. M. Platzman,et al.  Quantum Computing Using Electrons Floating on Liquid Helium , 2000 .

[3]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[4]  P. Zanardi Quantum entanglement in fermionic lattices , 2002 .

[5]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[6]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[7]  B. Sanders,et al.  Quantum-circuit design for efficient simulations of many-body quantum dynamics , 2011, 1108.4318.

[8]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[9]  I. Kassal,et al.  Preparation of many-body states for quantum simulation. , 2008, The Journal of chemical physics.

[10]  Christof Zalka Efficient Simulation of Quantum Systems by Quantum Computers , 1996, quant-ph/9603026.

[11]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[12]  Peter Zoller,et al.  Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions , 2013, 1306.2162.

[13]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[14]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[15]  Barry C. Sanders,et al.  Efficient Algorithms for Universal Quantum Simulation , 2013, RC.

[16]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[17]  A. Zeilinger,et al.  Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems , 2010, 1008.4116.

[18]  O. Biham,et al.  SIMULATING ISING SPIN GLASSES ON A QUANTUM COMPUTER , 1996, quant-ph/9611038.

[19]  M. Hastings,et al.  Can quantum chemistry be performed on a small quantum computer , 2013 .

[20]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[21]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[22]  J. Whitfield Communication: Spin-free quantum computational simulations and symmetry adapted states. , 2013, The Journal of chemical physics.

[23]  Richard Cleve,et al.  Exponential improvement in precision for Hamiltonian-evolution simulation , 2013 .

[24]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[25]  Waseem Bakr,et al.  Two-dimensional quantum gas in a hybrid surface trap , 2009 .

[26]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[27]  S. Wiesner Simulations of Many-Body Quantum Systems by a Quantum Computer , 1996, quant-ph/9603028.

[28]  Christoph Becher,et al.  Quantum computing with trapped ions , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[29]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[30]  Philip Walther,et al.  Photonic quantum simulation of ground state configurations of Heisenberg square and checkerboard lattice spin systems , 2012 .

[31]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[32]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[33]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[34]  Jiangbin Gong,et al.  Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator. , 2011, Physical review letters.

[35]  A. U.S.,et al.  Simulating Quantum Mechanics on a Quantum Computer ∗ , 1997 .

[36]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[37]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[38]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[39]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[40]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[41]  A Retzker,et al.  Proposal for verification of the haldane phase using trapped ions. , 2014, Physical review letters.

[42]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[43]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[44]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[45]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[46]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[47]  Aaron C. E. Lee,et al.  Experimental Performance of a Quantum Simulator: Optimizing Adiabatic Evolution and Identifying Many-Body Ground States , 2013, 1305.2253.

[48]  P. E. Kornilovitch,et al.  Cold Rydberg Atoms for Quantum Simulation of Exotic Condensed Matter Interactions , 2013, 1310.7360.

[49]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[50]  D. Leibfried,et al.  Trapped-ion quantum simulator: experimental application to nonlinear interferometers. , 2002, Physical review letters.

[51]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[52]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[53]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[54]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[55]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[56]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[57]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[58]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[59]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[60]  R. Feynman Simulating physics with computers , 1999 .