Markov Chain Monte Carlo Methods for Statistical Inference

These notes provide an introduction to Markov chain Monte Carlo methods and their applications to both Bayesian and frequentist statistical inference. Such methods have revolutionized what can be achieved computationally, especially in the Bayesian paradigm. The account begins by discussing ordinary Monte Carlo methods: these have the same goals as the Markov chain versions but can only rarely be implemented. Subsequent sections describe basic Markov chain Monte Carlo, based on the Hastings algorithm and including both the Metropolis method and the Gibbs sampler as special cases, and go on to discuss some more specialized developments, including adaptive slice sampling, exact goodness–of–fit tests, maximum likelihood estimation, the Langevin–Hastings algorithm, auxiliary variables techniques, perfect sampling via coupling from the past, reversible jumps methods for target spaces of varying dimensions, and simulated annealing. Specimen applications are described throughout the notes.

[1]  D. Higdon Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications , 1998 .

[2]  James G. Sanderson,et al.  Null matrices and the analysis of species co-occurrences , 1998, Oecologia.

[3]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[4]  Julian Besag,et al.  Simple Monte Carlo P-Values , 1992 .

[5]  L. Haines The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models , 1987 .

[6]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[7]  J. Besag,et al.  Sequential Monte Carlo p-values , 1991 .

[8]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[9]  Francesco Bartolucci,et al.  A recursive algorithm for Markov random fields , 2002 .

[10]  David Bruce Wilson Layered Multishift Coupling for use in Perfect Sampling Algorithms (with a primer on CFTP) , 1999 .

[11]  L. Stone,et al.  The checkerboard score and species distributions , 1990, Oecologia.

[12]  David Bruce Wilson,et al.  How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph , 1998, J. Algorithms.

[13]  Michael Creutz,et al.  Confinement and the critical dimensionality of space-time , 1979 .

[14]  E. Nummelin General irreducible Markov chains and non-negative operators: Preface , 1984 .

[15]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[16]  R. Tweedie,et al.  Perfect simulation and backward coupling , 1998 .

[17]  Kenneth Lange,et al.  MARKOV CHAINS FOR MONTE CARLO TESTS OF GENETIC EQUILIBRIUM IN MULTIDIMENSIONAL CONTINGENCY TABLES , 1997 .

[18]  J. A. Fill An interruptible algorithm for perfect sampling via Markov chains , 1998 .

[19]  J. Møller Aspects Of Spatial Statistics, Stochastic Geometry And Markov Chain Monte Carlo Methods , 1997 .

[20]  Ranjan Maitra,et al.  Bayesian reconstruction in synthetic magnetic resonance imaging , 1998, Optics & Photonics.

[21]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[22]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[23]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[24]  I. Weir Fully Bayesian Reconstructions from Single-Photon Emission Computed Tomography Data , 1997 .

[25]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[26]  Jun S. Liu Peskun's theorem and a modified discrete-state Gibbs sampler , 1996 .

[27]  C. Robert,et al.  Convergence Controls for MCMC Algorithms with Applications to Hidden Markov Chains , 1999 .

[28]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[29]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[30]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[31]  T. Liggett Interacting Particle Systems , 1985 .

[32]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[33]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[34]  Bryan F. J. Manly,et al.  A Note on the Analysis of Species Co‐Occurrences , 1995 .

[35]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[36]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[37]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[38]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[39]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[40]  Jun S. Liu,et al.  Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies , 1995 .

[41]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[42]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[43]  James Allen Fill,et al.  Extension of Fill's perfect rejection sampling algorithm to general chains (Extended abstract) , 2000 .

[44]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[45]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[46]  Jonathan J. Forster,et al.  Monte Carlo exact conditional tests for log-linear and logistic models , 1996 .

[47]  J. Forster,et al.  Monte Carlo exact tests for square contingency tables , 1996 .

[48]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[49]  E A Thompson,et al.  Monte Carlo estimation of mixed models for large complex pedigrees. , 1994, Biometrics.

[50]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[51]  Sean R. Eddy,et al.  Maximum Discrimination Hidden Markov Models of Sequence Consensus , 1995, J. Comput. Biol..

[52]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[53]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[54]  T. Louis,et al.  Use of Tumour Lethality to Interpret Tumorigenicity Experiments Lacking Cause‐Of‐Death Data , 1988 .

[55]  D. Haussler,et al.  Protein modeling using hidden Markov models: analysis of globins , 1993, [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences.

[56]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[57]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[58]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[59]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[60]  Wilfrid S. Kendall,et al.  Perfect Simulation for the Area-Interaction Point Process , 1998 .

[61]  J. Møller Perfect simulation of conditionally specified models , 1999 .

[62]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[63]  Peter Guttorp,et al.  A Nonhomogeneous Hidden Markov Model for Precipitation , 1996 .

[64]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[65]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[66]  Jesper Møller,et al.  Extensions of Fill's algorithm for perfect simulation , 1999 .

[67]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[68]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[69]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[70]  Olle Häggström,et al.  Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes , 1999 .

[71]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[72]  L Knorr-Held,et al.  Modelling risk from a disease in time and space. , 1998, Statistics in medicine.

[73]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[74]  J. Sanderson Testing Ecological Patterns , 2000, American Scientist.

[75]  V. Johnson Studying Convergence of Markov Chain Monte Carlo Algorithms Using Coupled Sample Paths , 1996 .

[76]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[77]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[78]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[79]  G. S. Fishman An Analysis of Swendsen–Wang and Related Sampling Methods , 1999 .

[80]  C. Robert,et al.  Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method , 2000 .

[81]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[82]  John MacCormick Stochastic algorithms for visual tracking: probabilistic modelling and stochastic algorithms for visual localisation and tracking , 2000 .

[83]  E. Thönnes Perfect simulation of some point processes for the impatient user , 1999, Advances in Applied Probability.

[84]  Håkon Tjelmeland,et al.  Markov Random Fields with Higher‐order Interactions , 1998 .

[85]  Mark Sweeny Monte Carlo study of weighted percolation clusters relevant to the Potts models , 1983 .

[86]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[87]  B. Ripley Simulating Spatial Patterns: Dependent Samples from a Multivariate Density , 1979 .

[88]  Wilfrid S. Kendall,et al.  Perfect simulation in stochastic geometry , 1999, Pattern Recognit..

[89]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[90]  B. Ripley Modelling Spatial Patterns , 1977 .

[91]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[92]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[93]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[94]  T. Fearn Discussion of paper by Neal, R. , 1999 .

[95]  F. Carrat,et al.  Monitoring epidemiologic surveillance data using hidden Markov models. , 1999, Statistics in medicine.

[96]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[97]  Peter J. Diggle,et al.  Simple Monte Carlo Tests for Spatial Pattern , 1977 .

[98]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[99]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[100]  J. Rice,et al.  Maximum likelihood estimation and identification directly from single-channel recordings , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[101]  James O. Berger,et al.  Bayesian Analysis for the Poly-Weibull Distribution , 1993 .

[102]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[103]  P. Green,et al.  Exact Sampling from a Continuous State Space , 1998 .

[104]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[105]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[106]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[107]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[108]  George B. Dantzig,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, Oper. Res..

[109]  M. Dwass Modified Randomization Tests for Nonparametric Hypotheses , 1957 .

[110]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[111]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[112]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[113]  E. Bølviken,et al.  Confidence Intervals from Monte Carlo Tests , 1996 .

[114]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[115]  J. Besag,et al.  Bayesian analysis of agricultural field experiments , 1999 .

[116]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[117]  Julian Besag,et al.  Probabilistic classification of forest structures by hierarchical modelling of the remote sensing process , 1997, Optics & Photonics.

[118]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[119]  Peter Green,et al.  Spatial statistics and Bayesian computation (with discussion) , 1993 .

[120]  J. Rosenthal,et al.  Convergence of Slice Sampler Markov Chains , 1999 .

[121]  A. Baddeley Time-invariance estimating equations , 2000 .

[122]  Julian Besag,et al.  Towards Bayesian image analysis , 1993 .

[123]  W. Kendall,et al.  Efficient Markovian couplings: examples and counterexamples , 2000 .

[124]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[125]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[126]  Karl-Heinz Jockel,et al.  Finite Sample Properties and Asymptotic Efficiency of Monte Carlo Tests , 1986 .

[127]  Nanny Wermuth,et al.  A note on the quadratic exponential binary distribution , 1994 .

[128]  P. Hall,et al.  The Effect of Simulation Order on Level Accuracy and Power of Monte Carlo Tests , 1989 .

[129]  O. Haggstrom,et al.  On Exact Simulation of Markov Random Fields Using Coupling from the Past , 1999 .