Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation

We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap-Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.

[1]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[2]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[3]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[4]  John B. Bell,et al.  A modified equation approach to constructing fourth order methods for acoustic wave propagation , 1987 .

[5]  Mrinal K. Sen,et al.  Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping , 2010 .

[6]  Patrick Joly,et al.  Higher-order finite elements with mass-lumping for the 1D wave equation , 1994 .

[7]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[8]  Mark Ainsworth,et al.  Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation , 2006, J. Sci. Comput..

[9]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[10]  Fernando A. Rochinha,et al.  A discontinuous finite element formulation for Helmholtz equation , 2006 .

[11]  P. Lax,et al.  Systems of conservation laws , 1960 .

[12]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[13]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[14]  Mark A. Dablain High order differencing for the scalar wave equation , 1984 .

[15]  J. Charles Gilbert,et al.  Higher Order Time Stepping for Second Order Hyperbolic Problems and Optimal CFL Conditions , 2008 .

[16]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[17]  Sandrine Fauqueux Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire. (Mixed spectral finite elements method and perfectly matched layers to model the propagation of elastic waves during time) , 2003 .

[18]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[19]  Khosro Shahbazi,et al.  An explicit expression for the penalty parameter of the interior penalty method , 2022 .

[20]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..