Higher Koszul duality and connections with $n$-hereditary algebras

We establish a connection between two areas of independent interest in representation theory, namely Koszul duality and higher homological algebra. This is done through a generalization of the notion of T -Koszul algebras, for which we obtain a higher version of classical Koszul duality. Our approach is motivated by and has applications for n-hereditary algebras. In particular, we characterize an important class of n-T -Koszul algebras of highest degree a in terms of (na− 1)-representation infinite algebras. As a consequence, we see that an algebra is n-representation infinite if and only if its trivial extension is (n + 1)-Koszul with respect to its degree 0 part. Furthermore, we show that when an n-representation infinite algebra is n-representation tame, then the bounded derived categories of graded modules over the trivial extension and over the associated (n + 1)-preprojective algebra are equivalent. In the n-representation finite case, we introduce the notion of almost n-T -Koszul algebras and obtain similar results.

[1]  A. King,et al.  Periodic Algebras which are Almost Koszul , 2002 .

[2]  Steffen Oppermann,et al.  Representation Theory of Geigle-Lenzing Complete Intersections , 2014, Memoirs of the American Mathematical Society.

[3]  O. Iyama Auslander–Reiten theory revisited , 2008, 0803.2841.

[4]  O. Iyama,et al.  Selfinjective quivers with potential and 2-representation-finite algebras , 2010, Compositio Mathematica.

[5]  Steffen Oppermann,et al.  Stable categories of higher preprojective algebras , 2009, 0912.3412.

[6]  Idun Reiten,et al.  Noetherian hereditary abelian categories satisfying Serre duality , 2002 .

[7]  Steffen Oppermann,et al.  n-representation-finite algebras and n-APR tilting , 2009, 0909.0593.

[8]  A. Bondal,et al.  HOMOLOGICAL PROPERTIES OF ASSOCIATIVE ALGEBRAS: THE METHOD OF HELICES , 1994 .

[9]  Dieter Happel,et al.  On the derived category of a finite-dimensional algebra , 1987 .

[10]  I. Reiten,et al.  Stable categories of Cohen-Macaulay modules and cluster categories: Dedicated to Ragnar-Olaf Buchweitz on the occasion of his sixtieth birthday , 2011, 1104.3658.

[11]  Steffen Oppermann,et al.  n-Representation infinite algebras , 2012, 1205.1272.

[12]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[13]  O. Iyama,et al.  n‐representation‐finite algebras and twisted fractionally Calabi–Yau algebras , 2009, 0908.3510.

[14]  Osamu Iyama,et al.  Maximal modifications and Auslander–Reiten duality for non-isolated singularities , 2010, 1007.1296.

[15]  B. Keller,et al.  Deformed Calabi–Yau completions , 2009, 0908.3499.

[16]  Osamu Iyama,et al.  Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories , 2004, math/0407052.

[17]  D. Diderot,et al.  Sur les A ∞ -categories , 2003 .

[18]  J. Rickard Derived categories and stable equivalence , 1989 .

[19]  R. Fossum The homological algebra of trivial extensions of Abelian categories with applications to ring theory , 1972 .

[20]  Sondre Kvamme,et al.  An introduction to higher Auslander–Reiten theory , 2016, Bulletin of the London Mathematical Society.

[21]  R. Fossum,et al.  Trivial Extensions of Abelian Categories , 1975 .

[22]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[23]  O. Iyama Cluster tilting for higher Auslander algebras , 2008, 0809.4897.

[24]  D. Madsen Ext-algebras and derived equivalences , 2006 .

[25]  Olaf M. Schnürer,et al.  Smoothness of equivariant derived categories , 2012, 1205.3132.

[26]  D. Madsen On a common generalization of Koszul duality and tilting equivalence , 2010, 1007.3282.

[27]  H. Minamoto Ampleness of two-sided tilting complexes , 2012 .

[28]  C. Nastasescu,et al.  Methods of Graded Rings , 2004 .

[29]  H. Thomas,et al.  Higher-dimensional cluster combinatorics and representation theory , 2010, 1001.5437.

[30]  I. Reiten,et al.  Dualities on Generalized Koszul Algebras , 2002 .

[31]  O. Iyama,et al.  d-Representation-finite self-injective algebras , 2017, Advances in Mathematics.

[32]  I. Mori,et al.  The structure of AS-Gorenstein algebras , 2011 .

[33]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[34]  V. Lunts Categorical resolution of singularities , 2009, 0905.4566.

[35]  Joseph Grant,et al.  Higher preprojective algebras, Koszul algebras, and superpotentials , 2019, Compositio Mathematica.

[36]  K. Yamaura Realizing stable categories as derived categories , 2012, 1201.5487.

[37]  David E. Evans,et al.  The Nakayama Automorphism of the Almost Calabi-Yau Algebras Associated to SU(3) Modular Invariants , 2010, 1008.1003.

[38]  Gustavo Jasso,et al.  The symplectic geometry of higher Auslander algebras: Symmetric products of disks , 2021, Forum of Mathematics, Sigma.