Ecosystem engineering across ecosystems: do engineer species sharing common features have generalized or idiosyncratic effects on species diversity?

Aim  To integrate the effects of ecosystem engineers (organisms that create, maintain or destroy habitat for other species) sharing the same archetype on species diversity, and assess whether different engineer species have generalized or idiosyncratic effects across environmentally similar ecosystems. Location  High-Andean habitats of Chile and Argentina, from 23° S to 41° S. Methods  We measured and compared the effects of eight alpine plants with cushion growth-form on species richness, species diversity (measured as the Shannon–Wiener index) and evenness of vascular plant assemblages across four high-Andean ecosystems of Chile and Argentina. Results  The presence of cushion plants always increased the species richness, diversity (measured as the Shannon–Wiener index) and evenness of high-Andean plant assemblages. However, while the presence of different cushion species within the same ecosystem controlled species diversity in the same way, these effects varied between cushion species from different ecosystems. Main conclusions  Results consistently supported the idea that increases in habitat complexity due to the presence of ecosystem engineers, in this case cushion plants, would lead to higher community diversity. Results also indicate that effects of the presence of different cushion species within the same ecosystem could be generalized, while the effects of cushion species from different ecosystems should be considered idiosyncratic.

[1]  Daniel P. McCarthy Dating with Cushion Plants: Establishment of a Silene acaulis Growth Curve in the Canadian Rockies , 1992 .

[2]  Will Steffen,et al.  Ecosystem consequences of changing biodiversity , 1998 .

[3]  Carol Pearson Ralph Observations on Azorella compacta (Umbelliferae), a Tropical Andean Cushion Plant , 1978 .

[4]  Robert M. Zink,et al.  Bird species diversity , 1996, Nature.

[5]  D. Tilman,et al.  Plant Dominance Along an Experimental Nutrient Gradient , 1984 .

[6]  Robert K. Peet,et al.  The Measurement of Species Diversity , 1974 .

[7]  J. Crooks,et al.  Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia , 1999 .

[8]  Ernesto I. Badano,et al.  Intercambio gaseoso en dos especies de plantas alto andinas de Chile central: efecto de la asociaciÛn a plantas en cojÌn , 2005 .

[9]  A. Fukui Indirect interactions mediated by leaf shelters in animal–plant communities , 2001, Population Ecology.

[10]  David L. Strayer,et al.  Mollusks as ecosystem engineers: the role of shell production in aquatic habitats , 2003 .

[11]  Ángela Sierra-Almeida,et al.  Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. , 2006, The New phytologist.

[12]  Jeffrey A. Crooks,et al.  Characterizing ecosystem‐level consequences of biological invasions: the role of ecosystem engineers , 2002 .

[13]  R. Macarthur,et al.  On Bird Species Diversity , 1961 .

[14]  Eileen M. O ' B Rien Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africa's woody flora , 1993 .

[15]  David Tilman,et al.  Secondary Succession and the Pattern of Plant Dominance Along Experimental Nitrogen Gradients , 1987 .

[16]  M. Dickman Some Indices of Diversity , 1968 .

[17]  M. Aizen,et al.  Species associations and nurse plant effects in patches of high‐Andean vegetation , 1999 .

[18]  P. DeBenedictis,et al.  On the Correlations between Certain Diversity Indices , 1973, The American Naturalist.

[19]  M. Arroyo,et al.  Positive associations between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes , 2004, Plant Ecology.

[20]  G. Stirling,et al.  Empirical Relationships between Species Richness, Evenness, and Proportional Diversity , 2001, The American Naturalist.

[21]  M. McGeoch,et al.  The Use of Size as an Estimator of Age in the Subantarctic Cushion Plant, Azorella selago (Apiaceae) , 2004 .

[22]  A. Flecker Ecosystem engineering by a dominant detritivore in a diverse tropical stream , 1996 .

[23]  R. Marquis,et al.  ECOSYSTEM ENGINEERING BY CATERPILLARS INCREASES INSECT HERBIVORE DIVERSITY ON WHITE OAK , 2003 .

[24]  J. P. Grime,et al.  Plant Strategies and Vegetation Processes. , 1980 .

[25]  P. Rundel,et al.  Microsite requirements, population structure and growth of the cushion plant Azorella compacta in the tropical Chilean Andes , 2004 .

[26]  A. Magurran Ecological Diversity and Its Measurement , 1988, Springer Netherlands.

[27]  J. Lawton,et al.  POSITIVE AND NEGATIVE EFFECTS OF ORGANISMS AS PHYSICAL ECOSYSTEM ENGINEERS , 1997 .

[28]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[29]  Diversity: A Two‐Level Approach , 1981 .

[30]  M. Willig,et al.  Randomness, Area, and Species Richness , 1982 .

[31]  Arroyo,et al.  Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes , .

[32]  W. Sousa The Role of Disturbance in Natural Communities , 1984 .

[33]  S. Naeem,et al.  Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem , 2003 .

[34]  K. Fritz,et al.  Habitat modification by the stream macrophyte Justicia americana and its effects on biota , 2004, Oecologia.

[35]  J. Lawton,et al.  Organisms as ecosystem engineers , 1994 .

[36]  R. León,et al.  The role of a native tussock grass (Paspalum quadrifarium Lam.) in structuring plant communities in the Flooding Pampa grasslands, Argentina , 2003, Biodiversity & Conservation.

[37]  P. Folgarait Ant biodiversity and its relationship to ecosystem functioning: a review , 1998, Biodiversity & Conservation.

[38]  A. Flecker,et al.  An ecosystem engineer, the beaver, increases species richness at the landscape scale , 2002, Oecologia.

[39]  R. Margalef La teoría de la información en Ecología , 1957 .

[40]  Felicia C. Coleman,et al.  Overexploiting marine ecosystem engineers: potential consequences for biodiversity , 2002 .

[41]  L. A. Cavieres,et al.  Efectos de la planta en cojín Oreopolus glacialis (Rubiaceae) sobre la riqueza y diversidad de especies en una comunidad alto-andina de Chile central , 2002 .

[42]  O. J. Reichman,et al.  The role of pocket gophers as subterranean ecosystem engineers , 2002 .

[43]  S. Hurlbert The Nonconcept of Species Diversity: A Critique and Alternative Parameters. , 1971, Ecology.

[44]  R. Peet RELATIVE DIVERSITY INDICES , 1975 .

[45]  R. Wotton,et al.  Expanding traditional views on suspension feeders – quantifying their role as ecosystem engineers , 2003 .

[46]  P. Chesson,et al.  Community ecology theory as a framework for biological invasions , 2002 .

[47]  J. Castilla,et al.  Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore , 2004 .

[48]  E. Tramer,et al.  Bird Species Diversity: Components of Shannon's Formula , 1969 .

[49]  Amy J. Symstad,et al.  Functional diversity revealed by removal experiments , 2003 .

[50]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[51]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[52]  J. Negishi,et al.  Detritus processing, ecosystem engineering and benthic diversity: a test of predator–omnivore interference , 2004 .

[53]  F. Chapin,et al.  Biotic Control over the Functioning of Ecosystems , 1997 .

[54]  R. May Patterns of species abundance and diversity , 1975 .

[55]  R. Poulin,et al.  Manipulation of host behaviour by parasites: ecosystem engineering in the intertidal zone? , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  J. B. Benedict USE OF SILENE ACAULIS FOR DATING: THE RELATIONSHIP OF CUSHION DIAMETER TO AGE , 1989 .