Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to mesenchymal transition of keratinocytes

[1]  Yang Ouyang,et al.  The Role of miR‐497/EIF3A Axis in TGFβ1‐Induced Epithelial–Mesenchymal Transition and Extracellular Matrix in Rat Alveolar Epithelial Cells and Pulmonary Fibroblasts , 2017, Journal of cellular biochemistry.

[2]  Fuqiang Feng,et al.  Reduced expression of microRNA-497 is associated with greater angiogenesis and poor prognosis in human gliomas. , 2016, Human pathology.

[3]  N. Zhang,et al.  miR-497 suppresses epithelial–mesenchymal transition and metastasis in colorectal cancer cells by targeting fos-related antigen-1 , 2016, OncoTargets and therapy.

[4]  M. Esteller,et al.  MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression , 2016, Molecular Cancer.

[5]  C. Heldin,et al.  Mechanisms of TGFβ-Induced Epithelial–Mesenchymal Transition , 2016, Journal of clinical medicine.

[6]  T. Olencki,et al.  MicroRNA expression profiling in metastatic cutaneous squamous cell carcinoma , 2016, Journal of the European Academy of Dermatology and Venereology : JEADV.

[7]  N. Kohno,et al.  Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor-β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts , 2016, PloS one.

[8]  Yao Xian,et al.  microRNA‐497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma , 2016, FEBS open bio.

[9]  Zheng Li,et al.  The role of miRNAs in cutaneous squamous cell carcinoma , 2015, Journal of cellular and molecular medicine.

[10]  Xiangli Li,et al.  miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug , 2016, Tumor Biology.

[11]  Shuai Wu,et al.  MiR-99a Inhibits Cell Proliferation and Tumorigenesis through Targeting mTOR in Human Anaplastic Thyroid Cancer. , 2015, Asian Pacific journal of cancer prevention : APJCP.

[12]  H. Schayek,et al.  MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma , 2015, Molecular Cancer.

[13]  A. Zaravinos The Regulatory Role of MicroRNAs in EMT and Cancer , 2015, Journal of oncology.

[14]  P. Papageorgis TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis , 2015, Journal of oncology.

[15]  A. Guo,et al.  The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. , 2015, Molecular bioSystems.

[16]  J. Hou,et al.  Down-regulation of miR-497 is associated with poor prognosis in renal cancer. , 2015, International journal of clinical and experimental pathology.

[17]  Zhiwen Xu,et al.  Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes. , 2015, Asian Pacific journal of cancer prevention : APJCP.

[18]  Shugang Li,et al.  TGF-β1/Smad Signaling Pathway Regulates Epithelial-to-Mesenchymal Transition in Esophageal Squamous Cell Carcinoma: In Vitro and Clinical Analyses of Cell Lines and Nomadic Kazakh Patients from Northwest Xinjiang, China , 2014, PloS one.

[19]  Jianping Zhang,et al.  Inhibitions of epithelial to mesenchymal transition and cancer stem cells‐like properties are involved in miR‐148a‐mediated anti‐metastasis of hepatocellular carcinoma , 2014, Molecular carcinogenesis.

[20]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[21]  P. Agostinis,et al.  Epithelial‐mesenchymal transition during invasion of cutaneous squamous cell carcinoma is paralleled by AKT activation , 2014, The British journal of dermatology.

[22]  Hua Tang,et al.  MicroRNAs regulate the epithelial to mesenchymal transition (EMT) in cancer progression. , 2014, MicroRNA.

[23]  A. Pivarcsi,et al.  MicroRNA-31 Is Overexpressed in Cutaneous Squamous Cell Carcinoma and Regulates Cell Motility and Colony Formation Ability of Tumor Cells , 2014, PloS one.

[24]  L. Tang,et al.  MiR-99a Antitumor Activity in Human Breast Cancer Cells through Targeting of mTOR Expression , 2014, PloS one.

[25]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[26]  Ryan M. Layer,et al.  Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells , 2013, Oncogene.

[27]  Melanie A. Huntley,et al.  ReportingTools: an automated result processing and presentation toolkit for high-throughput genomic analyses , 2013, Bioinform..

[28]  A. G. de Herreros,et al.  Epithelial to mesenchymal transition markers are associated with an increased metastatic risk in primary cutaneous squamous cell carcinomas but are attenuated in lymph node metastases. , 2013, Journal of dermatological science.

[29]  Hanjun Li,et al.  Expression of microRNA-497 and its prognostic significance in human breast cancer , 2013, Diagnostic Pathology.

[30]  M. Robinson,et al.  Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions , 2013, Oncogenesis.

[31]  Xiaodong Chen,et al.  MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. , 2013, Surgery.

[32]  Yi Jin,et al.  MicroRNA-99 Family Targets AKT/mTOR Signaling Pathway in Dermal Wound Healing , 2013, PloS one.

[33]  Yumeng Sun,et al.  Diverse functions of miR-125 family in different cell contexts , 2013, Journal of Hematology & Oncology.

[34]  R. Simpson,et al.  Contribution of cells undergoing epithelial-mesenchymal transition to the tumour microenvironment. , 2013, Journal of proteomics.

[35]  Samy Lamouille,et al.  TGF-&bgr; signaling and epithelial–mesenchymal transition in cancer progression , 2013, Current opinion in oncology.

[36]  H. Tseng,et al.  MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer , 2012, Oncogene.

[37]  Thilo Gambichler,et al.  Microarray analysis of microRNA expression in cutaneous squamous cell carcinoma. , 2012, Journal of dermatological science.

[38]  C. Heldin,et al.  Induction of epithelial-mesenchymal transition by transforming growth factor β. , 2012, Seminars in cancer biology.

[39]  Thomas Tuschl,et al.  Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. , 2012, Methods.

[40]  T. Tuschl,et al.  Bioinformatic analysis of barcoded cDNA libraries for small RNA profiling by next-generation sequencing. , 2012, Methods.

[41]  Dongsheng Yu,et al.  Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma. , 2012, Oral oncology.

[42]  D. Grandér,et al.  MicroRNA-125b Down-regulates Matrix Metallopeptidase 13 and Inhibits Cutaneous Squamous Cell Carcinoma Cell Proliferation, Migration, and Invasion* , 2012, The Journal of Biological Chemistry.

[43]  R. Navon,et al.  Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor , 2012, Molecular Cancer.

[44]  Li Ma,et al.  MicroRNA control of epithelial–mesenchymal transition and metastasis , 2012, Cancer and Metastasis Reviews.

[45]  A. Żaczek,et al.  Epithelial-Mesenchymal Transition: A Hallmark in Metastasis Formation Linking Circulating Tumor Cells and Cancer Stem Cells , 2012, Pathobiology.

[46]  Junfeng Zhang,et al.  miR-30 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. , 2012, Biochemical and biophysical research communications.

[47]  Iris Barshack,et al.  MiRNA Expression in Psoriatic Skin: Reciprocal Regulation of hsa-miR-99a and IGF-1R , 2011, PloS one.

[48]  Xinmin Li,et al.  Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin , 2011, Modern Pathology.

[49]  Bing-Hua Jiang,et al.  Analysis of MiR-195 and MiR-497 Expression, Regulation and Role in Breast Cancer , 2011, Clinical Cancer Research.

[50]  L. French,et al.  Squamous cell carcinoma of the skin shows a distinct microRNA profile modulated by UV radiation. , 2010, The Journal of investigative dermatology.

[51]  Lakshmanane Boominathan The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network , 2010, Cancer and Metastasis Reviews.

[52]  Craig E. Higgins,et al.  PAI-1 mediates the TGF-beta1+EGF-induced "scatter" response in transformed human keratinocytes. , 2010, The Journal of investigative dermatology.

[53]  R. Corbalán-Vélez,et al.  Elastosis solar en carcinomas espinocelulares cutáneos , 2010 .

[54]  Sun-Mi Park,et al.  The role of let-7 in cell differentiation and cancer. , 2010, Endocrine-related cancer.

[55]  R. Agami,et al.  Tumorigenicity of the miR-17-92 cluster distilled. , 2010, Genes & development.

[56]  R. Corbalán-Vélez,et al.  [Solar elastosis in cutaneous squamous cell carcinoma]. , 2010, Actas dermo-sifiliograficas.

[57]  Renaud Gaujoux,et al.  A flexible R package for nonnegative matrix factorization , 2010, BMC Bioinformatics.

[58]  Doron Betel,et al.  Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. , 2009, Genes & development.

[59]  S. Lowe,et al.  miR-19 is a key oncogenic component of mir-17-92. , 2009, Genes & development.

[60]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[61]  R. Crystal,et al.  A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition , 2009, Nature Cell Biology.

[62]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[63]  P. Ismail,et al.  Increased protein expression of p16 and cyclin D1 in squamous cell carcinoma tissues. , 2009, Bioscience trends.

[64]  D. Peeper,et al.  Metastasis mechanisms. , 2009, Biochimica et biophysica acta.

[65]  Suzanne M Olbricht,et al.  Cutaneous squamous cell carcinoma. , 2008, Advances in dermatology.

[66]  Sun Mi Park,et al.  MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death , 2008, Oncogene.

[67]  R. Weinberg,et al.  MicroRNAs in malignant progression , 2008, Cell cycle.

[68]  A. Jauch,et al.  The multi-step process of human skin carcinogenesis: a role for p53, cyclin D1, hTERT, p16, and TSP-1. , 2007, European journal of cell biology.

[69]  H. Trau,et al.  Expression of p53 in the evolution of squamous cell carcinoma: correlation with the histology of the lesion. , 2007, Journal of the American Academy of Dermatology.

[70]  M. Guarino Epithelial-mesenchymal transition and tumour invasion. , 2007, The international journal of biochemistry & cell biology.

[71]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[72]  C. Proby,et al.  Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours , 2006, British Journal of Cancer.

[73]  P. Boukamp Non-melanoma skin cancer: what drives tumor development and progression? , 2005, Carcinogenesis.

[74]  P. Boukamp UV‐induced Skin Cancer: Similarities – Variations , 2005, Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG.

[75]  C. Cockerell,et al.  New histopathological classification of actinic keratosis (incipient intraepidermal squamous cell carcinoma). , 2005, Journal of drugs in dermatology : JDD.

[76]  Wei Zheng,et al.  Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. , 2004, Assay and drug development technologies.

[77]  Long-Cheng Li,et al.  MethPrimer: designing primers for methylation PCRs , 2002, Bioinform..

[78]  J. Cleaver,et al.  UV damage, DNA repair and skin carcinogenesis. , 2002, Frontiers in bioscience : a journal and virtual library.

[79]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[80]  C. Cockerell,et al.  Histopathology of incipient intraepidermal squamous cell carcinoma ("actinic keratosis"). , 2000, Journal of the American Academy of Dermatology.

[81]  N. Fusenig,et al.  Preservation of morphological, functional, and karyotypic traits during long-term culture and in vivo passage of two human skin squamous cell carcinomas. , 1983, Cancer research.

[82]  J. Rheinwald,et al.  Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas. , 1981, Cancer research.