A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems

For a multivariable system with moving average noise (i.e., a multivariable controlled autoregressive moving average system), this paper proposes a filtering based extended stochastic gradient (ESG) algorithm and a filtering based multi-innovation ESG algorithm for improving the parameter estimation accuracy. The key is using the filtering technique and the multi-innovation identification theory. The proposed algorithms can identify the parameters of the system model and the noise model. The filtering based multi-innovation ESG algorithm can give more accurate parameter estimates. The numerical simulation results demonstrate that the proposed algorithms work well.

[1]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[2]  Yongsong Xiao,et al.  Parameter estimation for nonlinear dynamical adjustment models , 2011, Math. Comput. Model..

[3]  Fei Liu,et al.  H∞ Filtering for Discrete-Time Systems With Stochastic Incomplete Measurement and Mixed Delays , 2012, IEEE Trans. Ind. Electron..

[4]  Huijun Gao,et al.  Saturated Adaptive Robust Control for Active Suspension Systems , 2013, IEEE Transactions on Industrial Electronics.

[5]  F. Ding,et al.  Data filtering based least squares algorithms for multivariable CARAR-like systems , 2013 .

[6]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[7]  Feng Ding,et al.  Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle , 2014, Appl. Math. Comput..

[8]  Feng Ding,et al.  Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle , 2015, Signal Process..

[9]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[10]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[11]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[12]  F. Ding,et al.  Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems , 2015 .

[13]  F. Ding,et al.  Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .

[14]  F. Ding,et al.  Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems , 2016 .

[15]  Dongqing Wang,et al.  Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..

[16]  Wan Xiangkui,et al.  A T-wave alternans assessment method based on least squares curve fitting technique , 2016 .

[17]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[18]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[19]  F. Ding,et al.  Performance analysis of the generalised projection identification for time-varying systems , 2016 .

[20]  Qingxia Li,et al.  Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers , 2016, IEEE Geoscience and Remote Sensing Letters.

[21]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[22]  Jian Pan,et al.  Image noise smoothing using a modified Kalman filter , 2016, Neurocomputing.

[23]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[24]  Hao Wu,et al.  An adaptive confidence limit for periodic non-steady conditions fault detection , 2016 .

[25]  Feng Ding,et al.  A novel parameter separation based identification algorithm for Hammerstein systems , 2016, Appl. Math. Lett..

[26]  Feng Ding,et al.  Iterative identification algorithms for input nonlinear output error autoregressive systems , 2016 .

[27]  Yide Wang,et al.  Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter. , 2016, ISA transactions.

[28]  Feng Ding,et al.  Joint Estimation of States and Parameters for an Input Nonlinear State-Space System with Colored Noise Using the Filtering Technique , 2016, Circuits Syst. Signal Process..

[29]  Feng Ding,et al.  Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle , 2017, IET Signal Process..

[30]  Feng Ding,et al.  Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling , 2017, Circuits Syst. Signal Process..

[31]  T. Hayat,et al.  Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique , 2017 .

[32]  Feng Ding,et al.  Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..