Theory of Graded-Bandgap Thin-Film Solar Cells

[1]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[2]  M. Aillerie,et al.  Optimization by simulation of the nature of the buffer, the gap profile of the absorber and the thickness of the various layers in CZTSSe solar cells , 2017 .

[3]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[4]  Michael Woodhouse,et al.  Techno‐economic analysis of three different substrate removal and reuse strategies for III‐V solar cells , 2016 .

[5]  S. Niki,et al.  Optical constants of Cu(In, Ga)Se2 for arbitrary Cu and Ga compositions , 2015 .

[6]  Bernardo Cockburn,et al.  Interpolatory HDG Method for Parabolic Semilinear PDEs , 2018, Journal of Scientific Computing.

[7]  Manuel E. Solano,et al.  Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic backreflector. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Suhuai Wei,et al.  Impact of bulk properties and local secondary phases on the Cu 2 (Zn,Sn)Se 4 solar cells open-circuit voltage , 2015 .

[9]  M. Green Thin-film solar cells: review of materials, technologies and commercial status , 2007 .

[10]  M. Green,et al.  Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact , 2017 .

[11]  K. Kim,et al.  Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis , 2016, 1604.04491.

[12]  D. Flandre,et al.  Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells , 2014, Progress in photovoltaics.

[13]  Akhlesh Lakhtakia,et al.  Coupled Optoelectronic Simulation and Optimization of Thin-Film Photovoltaic Solar Cells , 2019, J. Comput. Phys..

[14]  J. Y. Kim,et al.  Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route , 2013, Scientific Reports.

[15]  John F. Geisz,et al.  Passivation of Interfaces in High-Efficiency Photovoltaic Devices , 1999 .

[16]  T. Mayer,et al.  Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating , 2015 .

[17]  A. De Vos,et al.  On some thermodynamic aspects of photovoltaic solar energy conversion , 1995 .

[18]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[19]  Alberto Salleo,et al.  Light trapping in thin-film silicon solar cells with submicron surface texture. , 2009, Optics express.

[20]  Akhlesh Lakhtakia,et al.  Progress on bioinspired, biomimetic, and bioreplication routes to harvest solar energy , 2017 .

[21]  M. Edoff,et al.  The Influence of Absorber Thickness on Cu(In,Ga)Se$_{\bf 2}$ Solar Cells With Different Buffer Layers , 2013, IEEE Journal of Photovoltaics.

[22]  J. Werner,et al.  Back surface band gap gradings in Cu(In, Ga)Se2 solar cells , 2001 .

[23]  J. Krč,et al.  Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells , 2018, Beilstein journal of nanotechnology.

[24]  H. Zogg,et al.  Sodium incorporation strategies for CIGS growth at different temperatures , 2005 .

[25]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[26]  I. M. Dharmadasa,et al.  Comparison of electrodeposited and sputtered intrinsic and aluminium-doped zinc oxide thin films , 2008 .

[27]  Yongli Gao,et al.  Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer , 2016 .

[28]  J. Hesthaven Numerical Methods for Conservation Laws: From Analysis to Algorithms , 2017 .

[29]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[30]  I. M. Dharmadasa,et al.  Next Generation Solar Cells Based on Graded Bandgap Device Structures Utilising Rod-Type Nano-Materials , 2015 .

[31]  I. M. Dharmadasa,et al.  Third generation multi-layer tandem solar cells for achieving high conversion efficiencies , 2005 .

[32]  D. Mitzi,et al.  Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells , 2010 .

[33]  David Pimentel,et al.  Food Versus Biofuels: Environmental and Economic Costs , 2009 .

[34]  Jack R. East,et al.  Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition , 1993 .

[35]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[36]  Gang Chen,et al.  An HDG Method for Time-dependent Drift-Diffusion Model of Semiconductor Devices , 2018, 1811.09705.

[37]  T. Gaylord,et al.  Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings , 1987 .

[38]  Viresh Dutta,et al.  Thin‐film solar cells: an overview , 2004 .

[39]  A. Lakhtakia,et al.  Double-absorber thin-film solar cell with 34% efficiency , 2020, 2006.06454.

[40]  D. Mitzi,et al.  Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells , 2013 .

[41]  Paola Pietra,et al.  Two-dimensional exponential fitting and applications to drift-diffusion models , 1989 .

[42]  Eugene Bykov,et al.  Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current , 2010 .

[43]  F. Djeffal,et al.  Graded band-gap engineering for increased efficiency in CZTS solar cells , 2018 .

[44]  M. Jubault,et al.  Differential in-depth characterization of co-evaporated Cu(In,Ga)Se2 thin films for solar cell applications , 2014 .

[45]  G. J. Bauhuis,et al.  Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate , 1997 .

[46]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[47]  Oscar D. Crisalle,et al.  Device modeling and simulation of the performance of Cu(In1−x,Gax)Se2 solar cells , 2004 .

[48]  K. Balachander,et al.  Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation , 2016 .

[49]  L. Mansfield,et al.  Charge carrier dynamics and recombination in graded band gap CuIn1−xGaxSe2 polycrystalline thin-film photovoltaic solar cell absorbers , 2013 .

[50]  J. Sites,et al.  Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells , 2005 .

[51]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[52]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[53]  Daniel Bouchier,et al.  Designing III–V multijunction solar cells on silicon , 2014 .

[54]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[55]  Akhlesh Lakhtakia,et al.  Optimization of nonhomogeneous indium-gallium-nitride Schottky-barrier thin-film solar cells , 2018, Journal of Photonics for Energy.

[56]  O. Roos A simple theory of back‐surface‐field (BSF) solar cells , 1978 .

[57]  Jim Douglas,et al.  The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures , 1975 .

[58]  O. Gunawan,et al.  Cu2ZnSnSe4 Thin‐Film Solar Cells by Thermal Co‐evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length , 2015 .

[59]  Tom G. Mackay,et al.  Enhanced efficiency of Schottky-barrier solar cell with periodically nonhomogeneous indium gallium nitride layer , 2017 .

[60]  Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows , 2008 .

[61]  K. Kim,et al.  Dielectric functions of Cu2ZnSnSe4 and Cu2SnSe3 semiconductors , 2015 .

[62]  Adam Slowik,et al.  Evolutionary algorithms and their applications to engineering problems , 2020, Neural Computing and Applications.

[63]  Craig M. Herzinger,et al.  Optical constants of GaxIn1−xP lattice matched to GaAs , 1995 .

[64]  L. Romankiw,et al.  A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell , 2012 .

[65]  G. F. Alapatt,et al.  Making Solar Cells a Reality in Every Home: Opportunities and Challenges for Photovoltaic Device Design , 2013, IEEE Journal of the Electron Devices Society.

[66]  L. Mansfield,et al.  Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency , 2012 .

[67]  R. Scheer,et al.  Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness , 2015 .

[68]  J. Sites,et al.  Band-gap grading in Cu(In,Ga)Se2 solar cells , 2005 .

[69]  Akhlesh Lakhtakia,et al.  Analysis of the Rigorous Coupled Wave Approach for p-polarized light in gratings , 2019, J. Comput. Appl. Math..

[70]  J. Olsson,et al.  Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models , 2014 .

[71]  Jin-Hua Huang,et al.  Silicon Nitride Nanopillars and Nanocones Formed by Nickel Nanoclusters and Inductively Coupled Plasma Etching for Solar Cell Application , 2009 .

[72]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[73]  S. Sung,et al.  Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S,Se)4 thin films , 2017 .

[74]  Jürgen H. Werner,et al.  Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .

[75]  Rajaram Bhat,et al.  Optical properties of AlxGa1−x As , 1986 .

[76]  H. Mariette,et al.  Alternative back contacts in kesterite Cu2ZnSn(S1-xSex)4 thin film solar cells , 2014 .

[77]  Wei Huang,et al.  Two‐Terminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives , 2019, Solar RRL.

[78]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[79]  J. Hutchby High−efficiency graded band−gap AlxGa1−xAs−GaAs solar cell , 1975 .

[80]  Suhuai Wei,et al.  Indications of short minority-carrier lifetime in kesterite solar cells , 2013 .

[81]  Ping Sheng,et al.  Wavelength-selective absorption enhancement in thin-film solar cells , 1983 .

[82]  Defne Apul,et al.  Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis , 2015 .

[83]  Bhavik R. Bakshi,et al.  Sustainable Engineering , 2019 .

[84]  O. Gunawan,et al.  Understanding the relationship between Cu_2ZnSn(S,Se)_4 material properties and device performance , 2014 .

[85]  A. Lakhtakia,et al.  Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells. , 2020, Applied optics.

[86]  Rajendra Singh,et al.  Photovoltaics- and Battery-Based Power Network as Sustainable Source of Electric Power , 2020, Energies.

[87]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[88]  Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells , 2014 .

[89]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[90]  Akhlesh Lakhtakia,et al.  Errata: Enhancement of light absorption efficiency of amorphous-silicon thin-film tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime , 2014 .

[91]  M. Green Photovoltaic technology and visions for the future , 2019, Progress in Energy.

[92]  Matthias Karg,et al.  Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells , 2017, Scientific Reports.

[93]  Marika Edoff,et al.  Improved Rear Surface Passivation of Cu(In,Ga)Se$_{\bf 2}$ Solar Cells: A Combination of an Al$_{\bf 2}$O $_{\bf 3}$ Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts , 2014, IEEE Journal of Photovoltaics.

[94]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[95]  Experimental excitation of multiple surface-plasmon-polariton waves with 2D gratings , 2014, 1407.7553.

[96]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[97]  Somnath Ghosh,et al.  Double-Layer Antireflection Coating of MgF2 SiNx for Crystalline Silicon Solar Cells , 2006 .

[98]  N. Anttu,et al.  Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling , 2016, Nanotechnology.

[99]  L. Beneš,et al.  Pulsed laser deposited alumina thin films , 2016 .

[100]  Mark Winskel,et al.  Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity , 2012 .

[101]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[102]  Tom G. Mackay,et al.  Combined optical–electrical finite-element simulations of thin-film solar cells with homogeneous and nonhomogeneous intrinsic layers , 2016 .

[103]  N. Lewis,et al.  Relative costs of transporting electrical and chemical energy , 2018 .

[104]  Marie-Therese Wolfram,et al.  A Drift-Diffusion-Reaction Model for Excitonic Photovoltaic Bilayers: Asymptotic Analysis and A 2-D HDG Finite-Element Scheme , 2012, 1202.0817.

[105]  J. Olsson,et al.  Combining strong interface recombination with bandgap narrowing and short diffusion length in Cu2ZnSnS4 device modeling , 2016 .

[106]  T. Minemoto,et al.  Simulation of optimum band-gap grading profile of Cu2ZnSn(S,Se)4 solar cells with different optical and defect properties , 2014 .

[107]  T. Mayer,et al.  Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal. , 2013, ACS nano.

[108]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[109]  Akhlesh Lakhtakia,et al.  Optimization approach for optical absorption in three-dimensional structures including solar cells , 2018, 1808.01312.

[110]  Uli Lemmer,et al.  Optoelectrical improvement of ultra‐thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer , 2016 .

[111]  Timothy B. Costa,et al.  Multiscale modeling of solar cells with interface phenomena , 2013, 1309.1882.

[112]  D. Mitzi,et al.  Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells , 2014 .

[113]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[114]  Martina Schmid,et al.  Review on light management by nanostructures in chalcopyrite solar cells , 2017 .

[115]  T. Mayer,et al.  Planar Light Concentration in Micro-Si Solar Cells Enabled by a Metallic Grating–Photonic Crystal Architecture , 2016 .

[116]  I. Rey‐Stolle,et al.  Refractive indexes and extinction coefficients of n- and p-type doped GaInP, AlInP and AlGaInP for multijunction solar cells , 2018 .

[117]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[118]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[119]  N. Ehrmann,et al.  Ellipsometric studies on ZnO:Al thin films: Refinement of dispersion theories , 2010 .

[120]  L. Korte,et al.  Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency , 2020, Advanced Energy Materials.

[121]  Harry A Atwater,et al.  Design of nanostructured solar cells using coupled optical and electrical modeling. , 2012, Nano letters.

[122]  Robert Magnusson,et al.  Light management through guided-mode resonances in thin-film silicon solar cells , 2014 .

[123]  P. Lalanne,et al.  Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors , 2017, IEEE Journal of Photovoltaics.

[124]  C. Jeon,et al.  A band-gap-graded CZTSSe solar cell with 12.3% efficiency , 2016 .

[125]  Akhlesh Lakhtakia,et al.  Enhancement of light absorption efficiency of amorphous-silicon thin-film tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime* , 2013 .

[126]  Weifeng Qiu,et al.  An analysis of HDG methods for convection dominated diffusion problems , 2013, 1310.0887.

[127]  Ipek Girgin Kavakli,et al.  Single and Double-Layer Antireflection Coatings on Silicon , 2002 .

[128]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[129]  Akhlesh Lakhtakia,et al.  Analysis of the Rigorous Coupled Wave Approach for s-polarized light in gratings , 2019, J. Comput. Appl. Math..

[130]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[131]  Christophe Dupuis,et al.  Ultrathin GaAs Solar Cells With a Silver Back Mirror , 2015, IEEE Journal of Photovoltaics.

[132]  Manuel E. Solano,et al.  Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[133]  S. Mohammadnejad,et al.  CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer , 2017 .

[134]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[135]  Stuart A. Boden,et al.  Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells , 2009 .

[136]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[137]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[138]  Gerald Earle Jellison,et al.  Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry , 1992 .

[139]  Akhlesh Lakhtakia,et al.  On optical-absorption peaks in a nonhomogeneous thin-film solar cell with a two-dimensional periodically corrugated metallic backreflector , 2018 .