Rainfall estimation over a Mediterranean region using a method based on various spectral parameters of SEVIRI-MSG

Abstract The ultimate objective of this paper is the estimation of rainfall over an area in Algeria using data from the SEVIRI radiometer (Spinning Enhanced Visible and Infrared Imager). To achieve this aim, we use a new Convective/Stratiform Rain Area Delineation Technique (CS-RADT). The satellite rainfall retrieval technique is based on various spectral parameters of SEVIRI that express microphysical and optical cloud properties. It uses a multispectral thresholding technique to distinguish between stratiform and convective clouds. This technique (CS-RADT) is applied to the complex situation of the Mediterranean climate of this region. The tests have been conducted during the rainy seasons of 2006/2007 and 2010/2011 where stratiform and convective precipitation is recorded. The developed scheme (CS-RADT) is calibrated by instantaneous meteorological radar data to determine thresholds, and then rain rates are assigned to each cloud type by using radar and rain gauge data. These calibration data are collocated with SEVIRI data in time and space.

[1]  B. Baum,et al.  Introduction to MODIS Cloud Products , 2006 .

[2]  H. Feidas,et al.  Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data , 2011 .

[3]  Garik Gutman,et al.  Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data , 1994 .

[4]  Jörg Bendix,et al.  Discriminating raining from non-raining clouds at mid-latitudes using meteosat second generation daytime data , 2007 .

[5]  A. Arking,et al.  Retrieval of Cloud Cover Parameters from Multispectral Satellite Images , 1985 .

[6]  J. Theon,et al.  Tropical rainfall measuring mission (TRMM) , 1987 .

[7]  Rob Roebeling,et al.  Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT‐8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA‐17 , 2006 .

[8]  A. Mariotti,et al.  Chapter 3 Relations between variability in the Mediterranean region and mid-latitude variability , 2006 .

[9]  A. Kokhanovsky,et al.  Reflection and transmission of solar light by clouds: asymptotic theory , 2006 .

[10]  R. A. Roebeling,et al.  SEVIRI rainfall retrieval and validation using weather radar observations , 2009 .

[11]  Toshiro Inoue,et al.  On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10μm Window Region , 1985 .

[12]  C. Reudenbach,et al.  Investigation of summertime convective rainfall in Western Europe based on a synergy of remote sensing data and numerical models , 2001 .

[13]  Vincenzo Levizzani,et al.  Satellite rainfall estimates: new perspectives for meteorology and climate from the EURAINSAT project , 2003 .

[14]  I. Csiszár,et al.  Precipitation estimation with satellites and radar , 1997 .

[15]  Elizabeth E. Ebert,et al.  Methods for Verifying Satellite Precipitation Estimates , 2007 .

[16]  Robert F. Adler,et al.  Thunderstorm cloud height-rainfall rate relations for use with satellite rainfall estimation techniques , 1984 .

[17]  Robert F. Adler,et al.  An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters , 1993 .

[18]  A. Gruber,et al.  Results from the GPCP Algorithm Intercomparison Programme , 1996 .

[19]  Patrick Minnis,et al.  Comparison of cirrus optical depths derived from GOES 8 and surface measurements , 2004 .

[20]  Jörg Bendix,et al.  Precipitation dynamics in Ecuador and northern Peru during the 1991/92 El Nino: A remote sensing perspective , 2000 .

[21]  Itamar M. Lensky,et al.  Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds , 1998 .

[22]  Phillip A. Arkin,et al.  The Relationship between Fractional Coverage of High Cloud and Rainfall Accumulations during GATE over the B-Scale Array , 1979 .

[23]  H. Sauvageot,et al.  SANAGA : un système d'acquisition numérique et de visualisation des données radar pour la validation des estimations satellitaires de précipitations , 1989 .

[24]  E. Anagnostou A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations , 2004 .

[25]  Song Yang,et al.  Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements , 2008 .

[26]  Xavier Rodó,et al.  Chapter 2 Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust , 2006 .

[27]  Thomas Nauss,et al.  Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data , 2006 .

[28]  Johannes Schmetz,et al.  Monitoring deep convection and convective overshooting with METEOSAT , 1997 .

[29]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[30]  F. Chopin,et al.  An intercomparison of 10-day satellite precipitation products during West African monsoon , 2011 .

[31]  Matthias Steiner,et al.  Sensitivity of the Estimated Monthly Convective Rain Fraction to the Choice of Z-R Relation , 1997 .

[32]  R. Gairola,et al.  Improved rainfall estimation over the Indian region using satellite infrared technique , 2011 .

[33]  E. C. Barrett,et al.  Precipitation measurement by satellites: Towards community algorithms , 1993 .

[34]  Johannes Schmetz,et al.  Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation , 2001 .

[35]  Toshiro Inoue,et al.  A cloud type classification with NOAA 7 split‐window measurements , 1987 .

[36]  Jörg Bendix,et al.  Discriminating raining from non‐raining cloud areas at mid‐latitudes using meteosat second generation SEVIRI night‐time data , 2008 .

[37]  R. A. Roebeling,et al.  Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data , 2008 .

[38]  T. Nauss,et al.  Weather type dependent quality assessment of a satellite-based rainfall detection scheme for the mid-latitudes , 2010 .

[39]  W. Paul Menzel,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase , 2000 .

[40]  W. Paul Menzel,et al.  Cloud Properties inferred from 812-µm Data , 1994 .

[41]  Roy W. Spencer,et al.  SSM/I Rain Retrievals within a Unified All-Weather Ocean Algorithm , 1998 .

[42]  Johannes Schmetz,et al.  Warm water vapour pixels over high clouds as observed by METEOSAT , 1997 .

[43]  Toshiro Inoue,et al.  Comparison of a split-window and a multi-spectral cloud classification for MODIS observations , 2003 .

[44]  E. Xoplaki,et al.  The Mediterranean climate: An overview of the main characteristics and issues , 2006 .

[45]  Jörg Bendix,et al.  The intercomparison of selected cloud retrieval algorithms , 2005 .

[46]  R. A. Scofield,et al.  The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution , 2002 .

[47]  A. Herman,et al.  Objectively determined 10-day African rainfall estimates created for famine early warning systems , 1997 .

[48]  Haralambos Feidas,et al.  Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation satellite data , 2011, Theoretical and Applied Climatology.

[49]  R. Roca,et al.  EPSAT-SG: a satellite method for precipitation estimation; its concepts and implementation for the AMMA experiment , 2010 .

[50]  Itamar M. Lensky,et al.  A Night-Rain Delineation Algorithm for Infrared Satellite Data Based on Microphysical Considerations , 2003 .

[51]  H. Feidas,et al.  Validation of an infrared-based satellite algorithm to estimate accumulated rainfall over the Mediterranean basin , 2009 .

[52]  Itamar M. Lensky,et al.  Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds at Nighttime , 2003 .

[53]  M. Babel,et al.  Development of a window correlation matching method for improved radar rainfall estimation , 2007 .

[54]  Characteristics of Clouds and cloud Clusters Obtained by Radar and Satellite Data during the TOGA-COARE IOP , 1997 .

[55]  Toshiro Inoue,et al.  An Instantaneous Delineation of Convective Rainfall Areas Using Split Window Data of NOAH-7 AVHRR , 1987 .

[56]  M. Llasat An objective classification of rainfall events on the basis of their convective features: application to rainfall intensity in the northeast of spain , 2001 .

[57]  C. Reudenbach,et al.  Retrieving Precipitation with GOES, Meteosat, and Terra/MSG at the Tropics and Mid-latitudes , 2007 .

[58]  Eulogio Pardo-Igúzquiza,et al.  Optimal areal rainfall estimation using raingauges and satellite data , 1999 .

[59]  Robert F. Adler,et al.  A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall , 1988 .