Transcriptional regulation of co-expressed microRNA target genes.

MicroRNAs play pivotal roles in gene regulation. Despite various research efforts on microRNAs, how microRNA target genes are transcriptionally regulated and how the transcriptional regulation of microRNA target genes relates to that of the microRNA genes are not well studied. By investigating the transcriptional regulation of microRNA target genes, we found that different groups of target genes of the same microRNA are co-expressed under different conditions, and these groups rarely overlap with each other for the majority of microRNAs. We also discovered that co-expressed microRNA target genes are often co-regulated, and different groups of target genes of the same microRNA are often regulated differently. In addition, we observed that transcription factors regulating a microRNA gene often regulate its target genes. Our study sheds light on the regulation of microRNA target genes, which will facilitate the prediction of microRNA target genes and the understanding of the transcriptional regulation of microRNA genes.

[1]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[2]  X. Li,et al.  Transcriptional regulation of mammalian miRNA genes. , 2011, Genomics.

[3]  W. Wong,et al.  CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Bartel,et al.  A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. , 2006, Genes & development.

[5]  M. Gerstein,et al.  Genomic analysis of gene expression relationships in transcriptional regulatory networks. , 2003, Trends in genetics : TIG.

[6]  C. Gregorio,et al.  Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development , 2004, Journal of Cell Science.

[7]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[8]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[9]  P. Todeschini,et al.  [Therapy strategies in the prevention of chronic allograft nephropathy]. , 2005, Giornale italiano di nefrologia : organo ufficiale della Societa italiana di nefrologia.

[10]  Atul J. Butte,et al.  Quantifying the relationship between co-expression, co-regulation and gene function , 2004, BMC Bioinformatics.

[11]  Jean-Michel Claverie,et al.  The statistical significance of nucleotide position-weight matrix matches , 1996, Comput. Appl. Biosci..

[12]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[13]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[14]  F. Robert,et al.  Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression , 2006 .

[15]  Z. Xie,et al.  Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation , 2003, Current Biology.

[16]  P. Gruss,et al.  PAX5 expression correlates with increasing malignancy in human astrocytomas. , 1995, Clinical cancer research : an official journal of the American Association for Cancer Research.

[17]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[20]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[21]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[22]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[23]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[24]  Mark Pollitt,et al.  Exploration , 2006, J. Digit. Forensic Pract..

[25]  H. Lipkin Where is the ?c? , 1978 .

[26]  W. El-Deiry,et al.  AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression , 1997, Nature Genetics.

[27]  Gautier Koscielny,et al.  Ensembl Genomes: Extending Ensembl across the taxonomic space , 2009, Nucleic Acids Res..

[28]  Nectarios Koziris,et al.  Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.

[29]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[30]  Martin C. Frith,et al.  Detection of cis -element clusters in higher eukaryotic DNA , 2001, Bioinform..

[31]  Kenneth P. Nephew,et al.  RNA Polymerase II Binding Patterns Reveal Genomic Regions Involved in MicroRNA Gene Regulation , 2010, PloS one.

[32]  Jun S. Liu,et al.  De novo cis-regulatory module elicitation for eukaryotic genomes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Watson,et al.  The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development , 2007, Development.

[34]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Martin Reczko,et al.  Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..

[36]  Zihua Hu,et al.  Insight into microRNA regulation by analyzing the characteristics of their targets in humans , 2009, BMC Genomics.

[37]  David Botstein,et al.  GO: : TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes , 2004, Bioinform..

[38]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[39]  D. Mercola,et al.  Egr1 Promotes Growth and Survival of Prostate Cancer Cells , 2003, The Journal of Biological Chemistry.

[40]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[41]  Kuo-Bin Li,et al.  Profiling MicroRNA Expression in Hepatocellular Carcinoma Reveals MicroRNA-224 Up-regulation and Apoptosis Inhibitor-5 as a MicroRNA-224-specific Target* , 2008, Journal of Biological Chemistry.

[42]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[43]  Jianfei Hu,et al.  MOPAT: a graph-based method to predict recurrent cis-regulatory modules from known motifs , 2008, Nucleic acids research.

[44]  Michael Q. Zhang,et al.  High-resolution human core-promoter prediction with CoreBoost_HM. , 2009, Genome research.

[45]  Ming Lu,et al.  TransmiR: a transcription factor–microRNA regulation database , 2009, Nucleic Acids Res..

[46]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..

[47]  G. I. Gallicano,et al.  miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. , 2009, Developmental biology.

[48]  P. R. Miles,et al.  Effects of heavy metal ions on selected oxidative metabolic processes in rat alveolar macrophages. , 1980, Toxicology and applied pharmacology.

[49]  Ting Wang,et al.  ENCODE whole-genome data in the UCSC Genome Browser , 2009, Nucleic Acids Res..

[50]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[51]  Minghua Deng,et al.  Systematic identification of conserved motif modules in the human genome , 2010, BMC Genomics.

[52]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.