Optical analysis of lens-like Cu2CdSnS4 quaternary alloy nanostructures

[1]  Abdul Ghani Albaali,et al.  Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment , 2016 .

[2]  Y. Fu,et al.  Advances in nanostructured thin film materials for solar cell applications , 2016 .

[3]  Nabeel Z. Al-Hazeem,et al.  Effect of Cadmium Concentration on Structural, Optical, and Electrical Properties of Cu2Zn1−xCdxSnS4 Quinternary Alloy Nanofibres, Synthesized by Electrospinning Technique , 2016 .

[4]  Y. Mai,et al.  Sputtered molybdenum thin films and the application in CIGS solar cells , 2016 .

[5]  Chihi Adel,et al.  Optical and electrical characterization of CIGS thin films grown by electrodeposition route , 2016, Applied Physics A.

[6]  Jianning Ding,et al.  Co-sputtering deposition and optical-electrical characteristic of Cu2CdSnS4 thin films for use in solar cells , 2016 .

[7]  Lin Sun,et al.  Investigation of microstructural and optical properties of Cu(In, Al)Se2 thin films with various copper content , 2015 .

[8]  S. Ramakrishna,et al.  Perovskites: Solar cells & engineering applications – materials and device developments , 2015 .

[9]  Y. Al-Douri,et al.  Analytical investigations of CdS nanostructures for optoelectronic applications , 2015 .

[10]  Pramod S. Patil,et al.  A review on pulsed laser deposited CZTS thin films for solar cell applications , 2015 .

[11]  A. H. Reshakb,et al.  Analytical investigations of CdS nanostructures for optoelectronic applications , 2015 .

[12]  B. Yao,et al.  Bandgap engineering of Cu 2 CdxZn 1 − xSnS 4 alloy for photovoltaic applications : A complementary experimental and first-principles study , 2015 .

[13]  L. Peter Electrochemical routes to earth-abundant photovoltaics: A minireview , 2015 .

[14]  U. Hashim,et al.  Structural and optical insights to enhance solar cell performance of CdS nanostructures , 2014 .

[15]  C. Westgate,et al.  Characterization of a CZTS thin film solar cell grown by sputtering method , 2014 .

[16]  B. Yao,et al.  Bandgap engineering of Cu2CdxZn1−xSnS4 alloy for photovoltaic applications: A complementary experimental and first-principles study , 2013 .

[17]  Chuan-ling Men,et al.  Characterization of Cu(In,Ga)Se2 films deposited by single-step electron beam evaporation for solar cell applications , 2012 .

[18]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[19]  Gang Wang,et al.  Synthesis and photoresponse of novel Cu2CdSnS4 semiconductor nanorods , 2012 .

[20]  Gilles Flamant,et al.  Very high fluxes for concentrating photovoltaics: Considerations from simple experiments and modeling , 2012 .

[21]  Xuezhao Shi,et al.  Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material , 2009 .

[22]  A. Katsui,et al.  Materials design for Cu-based quaternary compounds derived from chalcopyrite-rule , 2005 .

[23]  A. Katsui,et al.  Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se) , 2000 .