Domain decomposition methods for eigenvalue problems

Abstract This paper proposes several domain decomposition methods to compute the smallest eigenvalue of linear self-adjoint partial differential operators. Let us be given a partial differential operator on a domain which consists of two nonoverlapping subdomains. Suppose a fast eigenvalue solver is available for each of these subdomains but not for the union of them. The first proposed method is a scheme which determines an appropriate boundary condition at the interface separating the two regions. This boundary condition can be derived from the zero of a nonlinear operator which plays the same role for the eigenvalue problem as the Steklov–Poincare operator for the linear equation. An iterative method can be used to solve this nonlinear equation, yielding the exact boundary condition at the interface. This enables the determination of the eigenpair on the whole domain. The same concept can be applied to a Schwarz alternating method for the eigenvalue problem in case the subdomains overlap. A nonoverlapping scheme (in the spirit of Schur complement) will also be discussed. These ideas are also applicable to a domain imbedding algorithm.

[1]  William Gropp,et al.  Domain Decomposition: Parallel Multilevel Algorithms for Elliptic Partial Di erential Equations , 1995 .

[2]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[3]  M. K. Lim,et al.  On The Use Of The Domain Decomposition Method For Vibration Of Symmetric Laminates Having Discontinuities At The Same Edge , 1994 .

[4]  G. Golub,et al.  On the spectral decomposition of Hermitian matrices modified by low rank perturbations , 1988 .

[5]  O. Widlund,et al.  On finite element domain imbedding methods , 1990 .

[6]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[7]  Tony F. Chan,et al.  Subspace correction multi-level methods for elliptic eigenvalue problems , 2002, Numer. Linear Algebra Appl..

[8]  Frédéric Bourquin,et al.  Numerical study of an intrinsic component mode synthesis method , 1992 .

[9]  Charbel Farhat,et al.  On a component mode synthesis method and its application to incompatible substructures , 1994 .

[10]  G. Marchuk,et al.  Fictitious domain and domain decomposition methods , 1986 .

[11]  A. Knyazev Convergence rate estimates for iterative methods for a mesh symmetrie eigenvalue problem , 1987 .

[12]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[13]  M. Dryja,et al.  A finite element — Capacitance method for elliptic problems on regions partitioned into subregions , 1984 .

[14]  Jeffrey K. Bennighof,et al.  Component mode iteration for frequency calculations , 1987 .

[15]  Tobin A. Driscoll,et al.  Eigenmodes of Isospectral Drums , 1997, SIAM Rev..

[16]  A. Knyazev,et al.  Preconditioned iterative methods in subspace for solving linear systems with indefinite coefficient matrices and eigenvalue problems , 1989 .

[17]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[18]  E. D'yakonov Optimization in Solving Elliptic Problems , 1995 .

[19]  F. Bourquin Analysis and comparison of several component mode synthesis methods on one-dimensional domains , 1990 .

[20]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[21]  A. Simpson,et al.  SCANNING KRON'S DETERMINANT , 1974 .

[22]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[23]  B. L. Buzbee,et al.  The direct solution of the discrete Poisson equation on irregular regions , 1970 .

[24]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[25]  F. Bourquin,et al.  Component mode synthesis and eigenvalues of second order operators : discretization and algorithm , 1992 .

[26]  W. Gander,et al.  Restricted rank modification of the symmetric eigenvalue problem: Theoretical considerations , 1988 .

[27]  M. Petyt Large order structural eigenanalysis techniques: 1989, by N. S. Sehmi, Chichester: John Wiley & Sons Limited. Price £39·95; pp. 223. ISBN 0-745-804-802 , 1992 .

[28]  S. Lui Kron's method for symmetric eigenvalue problems , 1998 .

[29]  A. Knyazev,et al.  On an iterative method for finding lovver eigenvalues , 1992 .

[30]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[31]  A. Knyazev,et al.  Preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problems , 1994 .