Stress and flux reconstruction in Biot's poro-elasticity problem with application to a posteriori error analysis
暂无分享,去创建一个
Alexandre Ern | Kyrylo Kazymyrenko | Daniele A. Di Pietro | Rita Riedlbeck | Sylvie Granet | A. Ern | D. A. Pietro | S. Granet | K. Kazymyrenko | Rita Riedlbeck
[1] F. Bornemann,et al. A Posteriori Error Estimates for Elliptic Problems. , 1993 .
[2] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[3] Douglas N. Arnold,et al. Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..
[4] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[5] Martin Vohralík,et al. Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..
[6] B. I. WOHLMUTH,et al. AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS , .
[7] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[8] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[9] K. Terzaghi. Theoretical Soil Mechanics , 1943 .
[10] Kwang-Yeon Kim,et al. Guaranteed A Posteriori Error Estimator for Mixed Finite Element Methods of Linear Elasticity with Weak Stress Symmetry , 2011, SIAM J. Numer. Anal..
[11] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[12] Serge Nicaise,et al. An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .
[13] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[14] Martin Vohralík,et al. A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media , 2014, J. Comput. Phys..
[15] Martin Vohralík,et al. A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..
[16] Abimael F. D. Loula,et al. On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .
[17] Martin Vohralík,et al. hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..
[18] M. Williams,et al. On the Stress Distribution at the Base of a Stationary Crack , 1956 .
[19] Jean-Luc Guermond,et al. Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection , 2008, SIAM J. Numer. Anal..
[20] M. Biot. General Theory of Three‐Dimensional Consolidation , 1941 .
[21] Daniele Boffi,et al. A Nonconforming High-Order Method for the Biot Problem on General Meshes , 2015, SIAM J. Sci. Comput..
[22] Vidar Thomée,et al. Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .
[23] Martin Vohralík,et al. An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media , 2014, Comput. Math. Appl..
[24] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[25] Martin Vohralík,et al. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..
[26] Abimael F. D. Loula,et al. Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .
[27] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[28] A. Ženíšek,et al. The existence and uniqueness theorem in Biot's consolidation theory , 1984 .
[29] H. Nagaoka,et al. Finite Element Method Applied to Biot’s Consolidation Theory , 1971 .
[30] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[31] Pierre Ladevèze,et al. An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses , 2011, Computational Mechanics.
[32] E. Wilson,et al. FINITE-ELEMENT ANALYSIS OF SEEPAGE IN ELASTIC MEDIA , 1969 .
[33] A. Ern,et al. A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..
[34] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[35] S. Ohnimus,et al. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .
[36] Sébastien Meunier,et al. A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems , 2009 .
[37] Mary F. Wheeler,et al. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .
[38] Pierre Ladevèze,et al. ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .
[39] R. Showalter. Diffusion in Poro-Elastic Media , 2000 .
[40] M. Ainsworth,et al. Guaranteed computable error bounds for conforming and nonconforming finite element analyses in planar elasticity , 2010 .
[41] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[42] Mary F. Wheeler,et al. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .
[43] Sébastien Meunier. Analyse d'erreur a postériori pour les couplages hydro-mécaniques et mise en oeuvre dans code_aster , 2007 .
[44] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..