Stress and flux reconstruction in Biot's poro-elasticity problem with application to a posteriori error analysis

We derive equilibrated reconstructions of the Darcy velocity and of the total stress tensor for Biots poro-elasticity problem. Both reconstructions are obtained from mixed finite element solutions of local Neumann problems posed over patches of elements around mesh vertices. The Darcy velocity is reconstructed using RaviartThomas finite elements and the stress tensor using ArnoldWinther finite elements so that the reconstructed stress tensor is symmetric. Both reconstructions have continuous normal component across mesh interfaces. Using these reconstructions, we derive a posteriori error estimators for Biots poro-elasticity problem, and we devise an adaptive spacetime algorithm driven by these estimators. The algorithm is illustrated on test cases with analytical solution, on the quarter five-spot problem, and on an industrial test case simulating the excavation of two galleries.

[1]  F. Bornemann,et al.  A Posteriori Error Estimates for Elliptic Problems. , 1993 .

[2]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[3]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[4]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[5]  Martin Vohralík,et al.  Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..

[6]  B. I. WOHLMUTH,et al.  AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS , .

[7]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[8]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[9]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[10]  Kwang-Yeon Kim,et al.  Guaranteed A Posteriori Error Estimator for Mixed Finite Element Methods of Linear Elasticity with Weak Stress Symmetry , 2011, SIAM J. Numer. Anal..

[11]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[12]  Serge Nicaise,et al.  An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .

[13]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[14]  Martin Vohralík,et al.  A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media , 2014, J. Comput. Phys..

[15]  Martin Vohralík,et al.  A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..

[16]  Abimael F. D. Loula,et al.  On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .

[17]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[18]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[19]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection , 2008, SIAM J. Numer. Anal..

[20]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[21]  Daniele Boffi,et al.  A Nonconforming High-Order Method for the Biot Problem on General Meshes , 2015, SIAM J. Sci. Comput..

[22]  Vidar Thomée,et al.  Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .

[23]  Martin Vohralík,et al.  An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media , 2014, Comput. Math. Appl..

[24]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[25]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[26]  Abimael F. D. Loula,et al.  Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .

[27]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[28]  A. Ženíšek,et al.  The existence and uniqueness theorem in Biot's consolidation theory , 1984 .

[29]  H. Nagaoka,et al.  Finite Element Method Applied to Biot’s Consolidation Theory , 1971 .

[30]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[31]  Pierre Ladevèze,et al.  An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses , 2011, Computational Mechanics.

[32]  E. Wilson,et al.  FINITE-ELEMENT ANALYSIS OF SEEPAGE IN ELASTIC MEDIA , 1969 .

[33]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[34]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[35]  S. Ohnimus,et al.  Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .

[36]  Sébastien Meunier,et al.  A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems , 2009 .

[37]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .

[38]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[39]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[40]  M. Ainsworth,et al.  Guaranteed computable error bounds for conforming and nonconforming finite element analyses in planar elasticity , 2010 .

[41]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[42]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .

[43]  Sébastien Meunier Analyse d'erreur a postériori pour les couplages hydro-mécaniques et mise en oeuvre dans code_aster , 2007 .

[44]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..