Coupled Vlasov and two-fluid codes on GPUs
暂无分享,去创建一个
[1] Doron Levy,et al. A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..
[2] Gábor Tóth,et al. Sun‐to‐thermosphere simulation of the 28–30 October 2003 storm with the Space Weather Modeling Framework , 2007 .
[3] H. Schmitz,et al. Kinetic Vlasov simulations of collisionless magnetic reconnection , 2006 .
[4] Stéphane Dellacherie,et al. Kinetic-Fluid Coupling in the Field of the Atomic Vapor Laser Isotopic Separation: Numerical Results in the Case of a Monospecies Perfect Gas , 2003 .
[5] Holger Schmitz,et al. Darwin-Vlasov simulations of magnetised plasmas , 2006, J. Comput. Phys..
[6] Shi Jin,et al. Asymptotic‐preserving schemes for kinetic–fluid modeling of disperse two‐phase flows with variable fluid density , 2013, J. Comput. Phys..
[7] Stefano Markidis,et al. Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model , 2014, J. Comput. Phys..
[8] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[9] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[10] Holger Schmitz,et al. Comparison of time splitting and backsubstitution methods for integrating Vlasov's equation with magnetic fields , 2006, Comput. Phys. Commun..
[11] A. Taflove,et al. Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .
[12] N. Shankar,et al. An estimation of the plasma parameters in the solar corona using quasi-periodic metric type III radio burst emission , 2005 .
[13] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[14] Vladimir Kolobov,et al. Towards adaptive kinetic-fluid simulations of weakly ionized plasmas , 2012, J. Comput. Phys..
[15] Axel Klar,et al. Transition from Kinetic theory to macroscopic fluid equations: A problem for domain decomposition and a source for new algorithms , 2000 .
[16] Michael Hesse,et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .
[17] Erwin Laure,et al. The Fluid-Kinetic Particle-in-Cell method for plasma simulations , 2013, J. Comput. Phys..
[18] L. Leslie,et al. Three-Dimensional Mass-Conserving Semi-Lagrangian Scheme Employing Forward Trajectories , 1995 .
[19] Luc Mieussens,et al. A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..
[20] P. Smereka,et al. Coupling kinetic Monte-Carlo and continuum models with application to epitaxial growth , 2003 .
[21] Vlasov simulations of collisionless magnetic reconnection without background density , 2006, physics/0612082.
[22] Patrick Le Tallec,et al. Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes , 1997 .
[23] Rainer Grauer,et al. Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws , 2005, Parallel Comput..
[24] Kanya Kusano,et al. Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model , 2007, J. Comput. Phys..
[25] Uri Shumlak,et al. A high resolution wave propagation scheme for ideal Two-Fluid plasma equations , 2006, J. Comput. Phys..
[26] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .