Finding stabbing lines in 3-space

AbstractA line intersecting all polyhedra in a setℬ is called a “stabber” for the setℬ. This paper addresses some combinatorial and algorithmic questions about the setℒ(ℬ) of all lines stabbingℬ. We prove that the combinatorial complexity ofℒ(ℬ) has an % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVy0df9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0xc8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGpbGaai% ikaiaad6gadaahaaWcbeqaaiaaiodaaaGccaaIYaWaaWbaaSqabeaa% caWGJbWaaOaaaeaaciGGSbGaai4BaiaacEgacaWGUbaameqaaaaaki% aacMcaaaa!4368! $$O(n^3 2^{c\sqrt {\log n} } )$$ upper bound, wheren is the total number of facets inℬ, andc is a suitable constant. This bound is almost tight. Within the same time bound it is possible to determine if a stabbing line exists and to find one.

[1]  Joseph O'Rourke,et al.  Arrangements of lines in 3-space: a data structure with applications , 1988, SCG '88.

[2]  Nina Amenta Finding a line transversal of axial objects in three dimensions , 1992, SODA '92.

[3]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[4]  W. V. Hodge,et al.  Methods of algebraic geometry , 1947 .

[5]  Jirí Matousek Construction of ɛ-nets , 1990, Discret. Comput. Geom..

[6]  Jirí Matousek Construction of epsilon nets , 1989, SCG '89.

[7]  Pankaj K. Agarwal,et al.  A deterministic algorithm for partitioning arrangements of lines and its application , 1989, SCG '89.

[8]  Jirí Matousek,et al.  Cutting hyperplane arrangements , 1990, SCG '90.

[9]  Marco Pellegrini,et al.  Stabbing and ray shooting in 3 dimensional space , 1990, SCG '90.

[10]  J. Stolfi Primitives for computational geometry , 1988 .

[11]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[12]  Leonidas J. Guibas,et al.  Lines in space-combinators, algorithms and applications , 1989, STOC '89.

[13]  David Avis,et al.  Polyhedral line transversals in space , 1988, Discret. Comput. Geom..

[14]  W. Mccrea Analytical Geometry of Three Dimensions , 1943, Nature.

[15]  Leonidas J. Guibas,et al.  Lines in space - combinatorics, algorithms and applications , 1989, Symposium on the Theory of Computing.

[16]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[17]  D. Pedoe,et al.  Methods of Algebraic Geometry, II , 1948 .

[18]  Marco Pellegrini Combinatorial and algorithmic analysis of stabbing and visibility problems in three-dimensional space , 1991 .

[19]  David Avis,et al.  Algorithms for line transversals in space , 1987, SCG '87.

[20]  Seth J. Teller,et al.  Stabbing Isothetic Boxes and Rectangles in O(n Log N) Time , 1992, Comput. Geom..

[21]  David Avis,et al.  Lower Bounds for Line Stabbing , 1989, Inf. Process. Lett..

[22]  D. M. Y. Sommerville Analytical geometry of three dimensions , 1934 .

[23]  J. Todd Methods of Algebraic Geometry , 1948, Nature.

[24]  Jerzy W. Jaromczyk,et al.  Skewed projections with an application to line stabbing in R3 , 1988, SCG '88.

[25]  Karol Borsuk,et al.  Multidimensional Analytic Geometry , 1969 .